Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The subsidence caused by coal mining could cause the destruction of roads and houses, and even the failure of infrastructures. Understanding of the mechanism of coal mining subsidence may provide early protecting to infrastructures on coming failure, but dynamic analysis of subsidence due to coal mining is currently needed. In this study we apply particle image velocimetry (PIV) method to reveal strata movement and subsidence according to the prototype and indoor physical model similarity experiment of Henan. Our result shows magnitude of the subsidence of overlying strata during the coal mining at different excavation thickness, that more coal mining thickness may produce more subsidence, and that shallower coal may cause more significant subsidence. Our result suggests that further PIV test combined with field monitoring data may be an effective measure to study subsidence mechanism and pattern helping to predict disaster caused by subsidence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530644 | PMC |
http://dx.doi.org/10.1038/s41598-024-78137-4 | DOI Listing |