98%
921
2 minutes
20
Background: As a progressive neurodegenerative disease, the comprehensive understanding of the pathogenesis of Alzheimer's disease (AD) is yet to be clarified. Modifications in RNA, including m6A/m5C/m1A, affect the onset and progression of many diseases. Consequently, this study focuses on the role of methylation modification in the pathogenesis of AD.
Materials And Methods: Three AD-related datasets, namely GSE33000, GSE122063, and GSE44770, were acquired from GEO. Differential analysis of m6A/m5C/m1A regulator genes was conducted. Applying a consensus clustering approach, distinct subtypes within AD were identified as per the expression patterns of relevant differentially expressed genes. Machine learning models were constructed to identify five significant genes from the best model. The analysis of hub gene-based drug regulatory networks and ceRNA regulatory networks was conducted by Cytoscape.
Results: In comparison to non-AD patients, 24 genes were identified as dysregulated in AD patients, and these genes were associated with various immunological characteristics. Two distinct clusters were successfully identified through consensus clustering, with cluster 2 demonstrating higher immune characteristics compared to cluster 1. The performance of four machine learning models was determined by conducting a receiver operating characteristic (ROC) analysis. The analysis revealed that the SVM model achieved the highest AUC value of 0.947. Five genes (YTHDF1, METTL3, DNMT1, DNMT3A, ALKBH1) were selected as the predicted genes. Finally, a hub gene-based Gene-Drug regulatory network and a ceRNA regulatory network were successfully developed.
Conclusions: The findings offered fresh perspectives on the molecular patterns and immune mechanisms underlying AD, contributing valuable insights into our understanding of this complex neurodegenerative disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719101 | PMC |
http://dx.doi.org/10.18632/aging.206146 | DOI Listing |
Front Genet
August 2025
Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
Introduction: Small nucleolar RNA (snoRNA) mediates RNA modifications, including 2'-O-methylation (Nm) and pseudouridine (Ψ), which has been proven to impact tumor progression. However, the role of snoRNA in the epigenetics of tumors remains poorly understood due to the lack of sufficiently effective experimental methods to identify snoRNA targets. Here, we identified SNORD13H, a C/D box snoRNA, as being downregulated in hepatocellular carcinoma (HCC), and its low expression was associated with HCC development.
View Article and Find Full Text PDFMedComm (2020)
September 2025
Department of Laboratory Medicine Zhongnan Hospital of Wuhan University Wuhan China.
RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine, and pseudouridine, serve as pivotal regulators of gene expression with significant implications for human health and disease. These dynamic modifications influence RNA stability, splicing, translation, and interactions, thereby orchestrating critical biological processes such as embryonic development, immune response, and cellular homeostasis. Dysregulation of RNA modifications is closely associated with a variety of pathologies.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Stem Cell Research Center, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China.
Bladder cancer (BC) is a disease that predominantly affects older adults, with aging playing a critical role in its onset and progression. Age-associated phenomena, including immunosenescence and chronic inflammation, form a pro-tumor milieu, while genomic instability and epigenetic drift further increase cancer risk. The review highlights the dual role of DNA methylation in BC: global hypomethylation can activate transposable elements and oncogenes, whereas focal hypermethylation silences tumor-suppressor genes like CDKN2A, especially detrimental in older tissues that rely on these genes for senescence control.
View Article and Find Full Text PDFOncol Res
September 2025
Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo León (UANL), Monterrey, 64460, Mexico.
Emerging evidence highlights the potential of bioactive compounds, particularly polyphenols, as adjunctive therapeutic agents in the treatment of pancreatic cancer (PC), one of the most aggressive malignancies. This review focuses on epigallocatechin gallate (EGCG) and resveratrol due to their extensively documented anticancer activity, favorable safety profiles, and their unique ability to modulate multiple signaling pathways relevant to pancreatic tumorigenesis. Among polyphenols, these two have shown superior anti-cancer activity, epigenetic regulatory effects, and synergy with standard chemotherapies in preclinical pancreatic cancer models.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Core Facility of the First Hospital of Jilin University, Changchun, Jilin, China.
Diabetes and viral hepatitis, particularly hepatitis B (HBV) and hepatitis C (HCV), are significant global health burdens with complex interconnections. This review discusses the molecular mechanisms linking viral hepatitis to diabetes, focusing on inflammatory pathways, oxidative stress, and epigenetic modifications. Key findings highlight the role of STAT3 in promoting insulin resistance and β-cell apoptosis, the impact of ER stress and NOX-mediated oxidative stress on metabolic dysfunction, and the influence of epigenetic changes such as DNA methylation and histone acetylation on glucose homeostasis.
View Article and Find Full Text PDF