A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lung nodule classification using radiomics model trained on degraded SDCT images. | LitMetric

Lung nodule classification using radiomics model trained on degraded SDCT images.

Comput Methods Programs Biomed

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Politecnico di Milano, Via Giuseppe Ponzio, 34, 20133 Milan, Italy.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challenges, we propose a novel approach using synthetic LDCT images generated from standard-dose CT (SDCT) scans from the LIDC-IDRI dataset. Our objective is to develop and validate an interpretable radiomics-based model for distinguishing likely benign from likely malignant pulmonary nodules.

Methods: From a total of 1010 CT images (695 SDCTs and 315 LDCTs), we degraded SDCTs in the sinogram domain and obtained 1950 nodules as the training set. The 675 nodules from the LDCTs were stratified into 50%-50% partitions for validation and testing. Radiomic features were extracted from nodules, and three feature sets were assessed using: a) only shape and size (SS) features, b) all features but SS features, and c) all features. A systematic pipeline was developed to optimize the feature set and evaluate multiple machine learning models. Models were trained using degraded SDCT, validated and tested on the LDCT nodules.

Results: Training a logistic regression model using three SS features yielded the most promising results, achieving on the test set mean balanced accuracy, sensitivity, specificity, and AUC-ROC scores of 0.81, 0.76, 0.85, and 0.87, respectively.

Conclusions: Our study demonstrates the feasibility and effectiveness of using synthetic LDCT images for developing a relatively accurate radiomics-based model in lung nodule classification. This approach addresses challenges associated with LDCT screening, offering potential implications for improving lung cancer detection and reducing false positives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108474DOI Listing

Publication Analysis

Top Keywords

features features
12
lung nodule
8
nodule classification
8
trained degraded
8
degraded sdct
8
ldct screening
8
lung cancer
8
synthetic ldct
8
ldct images
8
radiomics-based model
8

Similar Publications