Publications by authors named "Valentina D A Corino"

Background: Coronary Artery Disease-Reporting and Data System (CAD-RADS), a standardized reporting system of stenosis severity from coronary computed tomography angiography (CCTA), is performed manually by expert radiologists, being time-consuming and prone to interobserver variability. While deep learning methods automating CAD-RADS scoring have been proposed, radiomics-based machine-learning approaches are lacking, despite their improved interpretability. This study aims to introduce a novel radiomics-based machine-learning approach for automating CAD-RADS scoring from CCTA images with multiplanar reconstruction.

View Article and Find Full Text PDF

With the advances in immunotherapy and the challenge of poor responsiveness in oral squamous cell carcinoma (OSCC) patients, understanding the tumor microenvironment is crucial. Radiogenomics offers the potential to provide pre-operative, non-invasive image-derived immune biomarkers. To this aim, the present study explores the capability of MRI-based radiomics to describe patients' immune state in OSCC.

View Article and Find Full Text PDF

Introduction: Coronary Artery Disease (CAD) is a leading cause of global mortality, accurate stenosis grading is crucial for treatment planning, it currently requires time-consuming manual assessment and suffers from interobserver variability. Few deep learning methods have been proposed for automated scoring, but none have explored combining radiomic and autoencoder (AE)-based features. This study develops a machine learning approach combining radiomic and AE-based features for stenosis grade evaluation from multiplanar reconstructed images (MPR) cardiac computed tomography (CCTA) images.

View Article and Find Full Text PDF

Background: Existing deep learning studies for the automated detection of hip prosthesis failure only consider the last available radiographic image. However, using longitudinal data is thought to improve the prediction, by combining temporal and spatial components. The aim of this study is to develop artificial intelligence models for predicting hip implant failure from multiple subsequent plain radiographs.

View Article and Find Full Text PDF

Despite the high incidence of left ventricular hypertrophy (LVH), clinical LVH-electrocardiography (ECG) criteria remain unsatisfactory due to low sensitivity. We propose an automatic LVH detection method based on ECG-extracted features and machine learning. ECG features were automatically extracted from two publicly available databases: PTB-XL with 2181 LVH and 9001 controls, and Georgia with 1012 LVH and 1387 controls.

View Article and Find Full Text PDF

Background And Objective: Nowadays, vulnerable coronary plaque detection from coronary computed tomography angiography (CCTA) is suboptimal, although being crucial for preventing major adverse cardiac events. Moreover, despite the suggestion of various vulnerability biomarkers, encompassing image and biomechanical factors, accurate patient stratification remains elusive, and a comprehensive approach integrating multiple markers is lacking. To this aim, this study introduces an innovative approach for assessing vulnerable coronary arteries and patients by integrating radiomics and biomechanical markers through machine learning methods.

View Article and Find Full Text PDF

Background And Objectives: The aim of this study is to develop a radiomic and deep learning-based signature for survival analysis of patients with Non-Small Cell Lung Cancer.

Methods: Four-hundred twenty-two patients from "Lung1" dataset were included in the study. A 3D convolutional autoencoder (AE) was built and features from the latent space extracted for further analysis.

View Article and Find Full Text PDF

Background And Objective: Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challenges, we propose a novel approach using synthetic LDCT images generated from standard-dose CT (SDCT) scans from the LIDC-IDRI dataset. Our objective is to develop and validate an interpretable radiomics-based model for distinguishing likely benign from likely malignant pulmonary nodules.

View Article and Find Full Text PDF

Radiomics, the quantitative extraction and mining of features from radiological images, has recently emerged as a promising source of non-invasive image-based cardiovascular biomarkers, potentially revolutionizing diagnostics and risk assessment. This review explores its application within coronary plaques and pericoronary adipose tissue, particularly focusing on plaque characterization and cardiac events prediction. By shedding light on the current state-of-the-art, achievements, and prospective avenues, this review contributes to a deeper understanding of the evolving landscape of radiomics in the context of coronary arteries.

View Article and Find Full Text PDF

Objective: Non-sustained supraventricular tachycardia (nsSVT) is associated with a higher risk of developing atrial fibrillation (AF), and, therefore, detection of nsSVT can improve AF screening efficiency. However, the detection is challenged by the lower signal quality of ECGs recorded using handheld devices and the presence of ectopic beats which may mimic the rhythm characteristics of nsSVT.

Methods: The present study introduces a new nsSVT detector for use in single-lead, 30-s ECGs, based on the assumption that beats in an nsSVT episode exhibits similar morphology, implying that episodes with beats of deviating morphology, either due to ectopic beats or noise/artifacts, are excluded.

View Article and Find Full Text PDF

Background And Objective: Coronary plaque rupture is a precipitating event responsible for two thirds of myocardial infarctions. Currently, the risk of plaque rupture is computed based on demographic, clinical, and image-based adverse features. However, using these features the absolute event rate per single higher-risk lesion remains low.

View Article and Find Full Text PDF

The clinical applicability of radiomics in oncology depends on its transferability to real-world settings. However, the absence of standardized radiomics pipelines combined with methodological variability and insufficient reporting may hamper the reproducibility of radiomic analyses, impeding its translation to clinics. This study aimed to identify and replicate published, reproducible radiomic signatures based on magnetic resonance imaging (MRI), for prognosis of overall survival in head and neck squamous cell carcinoma (HNSCC) patients.

View Article and Find Full Text PDF

Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies.

View Article and Find Full Text PDF

This study aimed to develop a robust multiclassification pipeline to determine the primary tumor location in patients with head and neck carcinoma of unknown primary using radiomics and machine learning techniques. The dataset included 400 head and neck cancer patients with primary tumor in oropharynx, OPC (n = 162), nasopharynx, NPC (n = 137), oral cavity, OC (n = 63), larynx and hypopharynx, HL (n = 38). Two radiomic-based multiclassification pipelines (P1 and P2) were developed.

View Article and Find Full Text PDF

Introduction: Cardiac amyloidosis (CA) shares similar clinical and imaging characteristics (e.g., hypertrophic phenotype) with aortic stenosis (AS), but its prognosis is generally worse than severe AS alone.

View Article and Find Full Text PDF

Aim: Revision hip arthroplasty has a less favorable outcome than primary total hip arthroplasty and an understanding of the timing of total hip arthroplasty failure may be helpful. The aim of this study is to develop a combined deep learning (DL) and machine learning (ML) approach to automatically detect hip prosthetic failure from conventional plain radiographs.

Methods: Two cohorts of patients (of 280 and 352 patients) were included in the study, for model development and validation, respectively.

View Article and Find Full Text PDF

. The objective of the present study is to investigate the feasibility of using heart rate characteristics to estimate atrial fibrillatory rate (AFR) in a cohort of atrial fibrillation (AF) patients continuously monitored with an implantable cardiac monitor. We will use a mixed model approach to investigate population effect and patient specific effects of heart rate characteristics on AFR, and will correct for the effect of previous ablations, episode duration, and onset date and time.

View Article and Find Full Text PDF

Objective: The extent of response to neoadjuvant chemotherapy predicts survival in Ewing sarcoma. This study focuses on MRI radiomics of skeletal Ewing sarcoma and aims to investigate feature reproducibility and machine learning prediction of response to neoadjuvant chemotherapy.

Materials And Methods: This retrospective study included thirty patients with biopsy-proven skeletal Ewing sarcoma, who were treated with neoadjuvant chemotherapy before surgery at two tertiary sarcoma centres.

View Article and Find Full Text PDF

Methods for characterization of atrial fibrillation (AF) episode patterns have been introduced without establishing clinical significance. This study investigates, for the first time, whether post-ablation recurrence of AF can be predicted by evaluating episode patterns. The dataset comprises of 54 patients (age 56 ± 11 years; 67% men), with an implantable cardiac monitor, before undergoing the first AF catheter ablation.

View Article and Find Full Text PDF

Purpose: Aim of this study is to assess the repeatability of radiomic features on magnetic resonance images (MRI) and their stability to variations in time of repetition (TR), time of echo (TE), slice thickness (ST), and pixel spacing (PS) using vegetable phantoms.

Methods: The organic phantom was realized using two cucumbers placed inside a cylindrical container, and the analysis was performed using T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted images. One dataset was used to test the repeatability of the radiomic features, whereas other four datasets were used to test the sensitivity of the different MRI sequences to image acquisition parameters (TR, TE, ST, and PS).

View Article and Find Full Text PDF

This work presents an ECG classifier for variable leads as a contribution to the Computing in Cardiology Challenge/CinC Challenge 2021. It aims to integrate deep and classic machine learning features into a single model, exploring the proper structure and training procedure.From the initial 88 253 signals, only 84 210 were included.

View Article and Find Full Text PDF

Background: Total hip arthroplasty (THA) follow-up is conventionally conducted with serial X-ray imaging in order to ensure the early identification of implant failure. The purpose of this study is to develop an automated radiographic failure detection system. Methods: 630 patients with THA were included in the study, two thirds of which needed total or partial revision for prosthetic loosening.

View Article and Find Full Text PDF

Purpose: To evaluate stability and machine learning-based classification performance of radiomic features of spine bone tumors using diffusion- and T2-weighted magnetic resonance imaging (MRI).

Material And Methods: This retrospective study included 101 patients with histology-proven spine bone tumor (22 benign; 38 primary malignant; 41 metastatic). All tumor volumes were manually segmented on morphologic T2-weighted sequences.

View Article and Find Full Text PDF