98%
921
2 minutes
20
Protein mycoloylation is a recently identified unusual post-translational modification (PTM) exclusively observed in Mycobacteriales, an order of bacteria that includes several human pathogens. These bacteria possess a distinctive outer membrane, known as the mycomembrane, composed of very long-chain fatty acids called mycolic acids. It has been demonstrated that a few mycomembrane proteins undergo covalent modification with mycolic acids in the model organism through the action of mycoloyltransferase MytC. This PTM represents the first example of protein -acylation in prokaryotes and also the first example of protein modification by mycolic acid. Many questions about the specificity of protein -mycoloylation remain crucial for understanding its evolutionary significance in Mycobacteriales and its role in cell physiology. We have developed the first bioorthogonal mycolate donor featuring the natural mycolic acid pattern, enabling direct, unambiguous transfer of the lipid moiety to its acceptors and efficient metabolic labeling and enrichment of MytC protein substrates. Mass spectrometry analysis of the labeled proteins and comparative proteomic analysis of the cell envelope proteome between wild-type and Δ strains identified an unbiased list of 21 proteins likely mycoloylated in the cell. The robustness of our approach is demonstrated by the successful biological validation of mycoloylation in 6 candidate proteins within wild-type cells, revealing the characteristic profile of proteins modified with natural mycolates. These findings provide interesting insights into the significance of this new lipidation pathway and pave the way for understanding their function, especially concerning the mycoloyltransferase family that includes the essential Antigen85 enzymes in Mycobacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.4c00502 | DOI Listing |
Nat Rev Mol Cell Biol
September 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.
View Article and Find Full Text PDFCurr Biol
September 2025
Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address:
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.
View Article and Find Full Text PDFBioorg Chem
September 2025
School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. Electronic address:
Although antimicrobial peptides possess potent antimicrobial activities, the high cost of production, based on amino acid length, has limited their therapeutic and cosmeceutical applications. This study aimed to produce and characterize de novo designed antimicrobial peptides derived from WSKK11 and WSRR11 for efficacy against acne-causing bacteria. Ten designed peptides were evaluated for antimicrobial, hemolytic, and cytotoxic activities, as well as, secondary structures by FTIR and modes of action.
View Article and Find Full Text PDFEmerg Microbes Infect
September 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
Enveloped viruses rely on matrix proteins for structural integrity and lifecycle progression. Matrix protein 1 (M1) is the most abundant structural protein of influenza A virus (IAV), playing a multifaceted role in viral uncoating, polymerase activity, vRNA transcription and replication, and assembly and budding. The M1 protein not only interacts with host cells but also regulates viral morphogenesis, thereby influencing viral transmissibility and pathogenicity.
View Article and Find Full Text PDFElife
September 2025
Department of Neuroscience, Washington University School of Medicine, St Louis, United States.
Peripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown.
View Article and Find Full Text PDF