98%
921
2 minutes
20
Experimental and theoretical techniques were used to investigate the mechanism of pyridine C-H activation by diarylboryl/bis(phosphine) PBP pincer complexes of Ir. The critical intermediate (PBP)IrCO () contains a three-coordinate, Ir-bound boron that retains Lewis acidity in the perpendicular direction. Coordination of pyridine to this boron center in leads to fast insertion of Ir into the 2-CH bond of pyridine, providing a different topology of direction than the conventional directed C-H activation where both the directing group coordination and C-H activation happen at the same metal center. Beyond this critical sequence, the system possesses significant complexity in terms of possible isomers and pathways, which have been thoroughly explored. Kinetic and thermodynamic preferences for the activation of differently substituted pyridines were also investigated. In experimental work, the key intermediate is accessed via elimination of benzene from a phenyl/hydride containing precursor (PBP)IrHCO (). Density functional theory (DFT) investigations of the mechanism of benzene loss from revealed the possibility of a genuinely new type of mechanism, whereby the Ph-H bond is made in a concerted process that is best described as C-H reductive elimination from boron, assisted by the transition metal (TMARE). For Ir, this pathway was predicted to be competitive with the more conventional pathways involving C-H reductive elimination from Ir, but still higher in energy barrier. However, for the Rh analog , TMARE was calculated to be the preferred pathway for benzene loss and this prediction was experimentally corroborated through the study of reaction rates and the kinetic isotope effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565645 | PMC |
http://dx.doi.org/10.1021/jacs.4c12143 | DOI Listing |
J Am Chem Soc
September 2025
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.
View Article and Find Full Text PDFJ Org Chem
September 2025
State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
The -di(2-pyridyl)arenes, featuring a unique structure, hold significant promise for applications in fluorescent probes, synthetic nanoparticle stabilizers, and chemical synthesis. The mechanism of Ru-catalyzed decarboxylation and heteroarylation reactions of aryl carboxylic acids to access -dipyridylarenes was elucidated using DFT calculations, which involved C-H bond activation, oxidative addition, reductive elimination, and decarboxylation processes to form -di(2-pyridyl)arenes. The rate-determining step of the reaction is the second reductive elimination step with an energy barrier of 27.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Rutgers University-Newark, Newark, New Jersey 07102, United States.
Carbon-hydrogen bond activation is a pillar of synthetic chemistry. While it is generally accepted that Pd is more facile than Ni in C-H activation catalysis, there are no experimental platforms available to directly compare the magnitude of C-H bond weakening between Ni and Pd prior to bond scission. This work presents the first direct measurements of C(sp)-H bond acidity (p) and bond dissociation free energy (BDFE) for a species containing a ligated alkane-palladium interaction (RCH···Pd), also known as an agostic interaction.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.
Diversity-oriented synthesis (DOS) has emerged as an efficient strategy for constructing diverse compound libraries, facilitating hit or lead identification in the drug discovery process. In parallel, developing diverse transformations at different sites is an appealing strategy to expand the diversity of appendages on scaffolds. Owing to the availability of C-H bonds at multiple sites of pharmacophores, diversity-oriented C-H activation reactions are an ideal approach to realize this goal.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.
Herein, we report the first asymmetric synthesis of cycloartobiloxanthone, a polycyclic dihydroxanthone natural product. Our convergent synthesis employs a rhodium-catalyzed C-H insertion reaction to construct the key fused tricyclic core with high enantioselectivity. Two fragments were joined together by a displacement reaction and a Friedel-Crafts acylation to generate the dihydroxanthone core.
View Article and Find Full Text PDF