A Patching and Coding Lipid Raft-Localized Universal Imaging Platform.

Chem Biomed Imaging

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lipid rafts (LRs) are relatively well-ordered functional microdomains in cell membranes and play an irreplaceable role in physiological processes as a transduction platform for multiple signaling pathways. Due to their small size and high spatiotemporal dynamics, it is difficult to perform lipid raft-localized biomolecule imaging on the surface of living cells. Here, we report a DNA nanotechnology-based platform for reversible manipulation and localized analysis of lipid rafts, which consists of two modules: "patching and coding probe pair" and "fishing probe". The probe pair is generated by modifying two different sets of connectable DNA structures on a lipid raft-specific protein. After recognizing lipid rafts, the two probes in close proximity are linked by a DNA ligase reaction to form a lipid raft identity (LR-ID) code. The LR-ID strand patches and stabilizes the lipid raft structure. Interestingly, the raft patches formed can be depatched by restriction endonucleases, providing the first reversible manipulation of the lipid raft structure in living cells. We also designed a "fishing probe" with a DNA hairpin structure using an aptamer that can specifically bind to the target. The probe can cascade the reaction to two input signals "LR-ID" and "target protein" to generate an "off-on" fluorescence switch, allowing imaging and dynamic monitoring of target proteins localized in lipid rafts. By encoding arbitrary targets (in the case of glycans) in lipid rafts, we have created a universal lipid raft-localized imaging platform. This work provides an integrated analytical and manipulative platform to reveal lipid rafts and associated signaling pathways at the molecular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503886PMC
http://dx.doi.org/10.1021/cbmi.3c00109DOI Listing

Publication Analysis

Top Keywords

lipid rafts
24
lipid
13
lipid raft-localized
12
lipid raft
12
imaging platform
8
signaling pathways
8
living cells
8
reversible manipulation
8
"fishing probe"
8
raft structure
8

Similar Publications

Flotillin-binding protein networks serve as scaffolds, organizing lipid rafts and facilitating the recruitment of other raft-associated proteins such as receptors and downstream signaling molecules to regulate various intracellular pathways, including those involved in cell proliferation, migration, and endocytosis. Flotillins belong to the SPFH (stomatin/prohibitin/flotillin/HflK/C) domain-containing protein family, also known as the prohibitin homology (PHB) domain, which enables membrane association via acylation and hydrophobic hairpin motifs that anchor them to the inner leaflet of the plasma membrane. The functional diversity of flotillin proteins within membrane microdomains primarily stems from their interactions with other proteins.

View Article and Find Full Text PDF

Elaidic acid drives cellular senescence and inflammation via lipid raft-mediated IL-1R signaling.

iScience

September 2025

Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.

Fatty acids (TFAs) have been associated with various inflammatory diseases, including atherosclerosis and metabolic syndrome, such as metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH). However, the underlying mechanism remains unclear. Here, we show that in response to DNA damage, elaidic acid (EA), a most common TFA, amplifies interleukin-1 receptor (IL-1R) signaling, leading to the promotion of cellular senescence and senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Maladaptive trained immunity in viral infections.

J Clin Invest

September 2025

Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.

Trained immunity (TRIM) is a form of long-lasting functional reprogramming of innate immune cells and their progenitors that enhances responsiveness to subsequent stimuli. Although first characterized in myeloid cells, TRIM was recently extended to nonmyeloid cell types, including endothelial and glial cells, which also exhibit stimulus-driven, memory-like behavior. While initially recognized as a protective mechanism, particularly in the context of vaccines and acute infections, TRIM can also become maladaptive, promoting chronic inflammation, immune dysfunction, and disease.

View Article and Find Full Text PDF

Chandipura virus (CHPV), a Rhabdoviridae family member, is an emerging neurotropic pathogen responsible for acute encephalitis outbreaks in children, mainly in India. Despite its public health relevance, the mechanisms underlying CHPV entry into host cells remain poorly understood. In this study, we used pharmacological inhibitors in Vero cells to dissect the virus's entry pathways.

View Article and Find Full Text PDF

Unlabelled: Alzheimer’s disease (AD) is the most common type of dementia. A major pathological feature of AD is the aggregation of amyloid-β (Aβ), primarily driven by β-secretase (BACE1) activity. However, the mechanisms underlying continuous Aβ accumulation remain unclear.

View Article and Find Full Text PDF