Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Hepatocellular carcinoma (HCC) is a major health challenge with high incidence and poor survival rates in China. Systemic therapies, particularly tyrosine kinase inhibitors (TKIs), are the first-line treatment for advanced HCC, but resistance is common. The Rho GTPase family member Rho GTPase activating protein 12 (ARHGAP12), which regulates cell adhesion and invasion, is a potential therapeutic target for overcoming TKI resistance in HCC. However, no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.

Aim: To unveil the expression of ARHGAP12 in HCC, its role in TKI resistance and its potential associated pathways.

Methods: This study used single-cell RNA sequencing (scRNA-seq) to evaluate mRNA levels and explored its mechanisms through enrichment analysis. CellChat was used to investigate focal adhesion (FA) pathway regulation. We integrated bulk RNA data (RNA-seq and microarray), immunohistochemistry and proteomics to analyze mRNA and protein levels, correlating with clinical outcomes. We assessed ARHGAP12 expression in TKI-resistant HCC, integrated conventional HCC to explore its mechanism, identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.

Results: mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA. In malignant hepatocytes in high-score FA groups, MDK-[integrin alpha 6 (ITGA6) + integrin β-1 (ITGB1)] showed specificity in ligand-receptor interactions. ARHGAP12 mRNA and protein were upregulated in bulk RNA, immunohistochemistry and proteomics, and higher expression was associated with a worse prognosis. ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway. ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA. High expression of ARHGAP12 was associated with adverse reactions to sorafenib, cabozantinib and regorafenib, but not to immunotherapy.

Conclusion: ARHGAP12 expression is elevated in HCC and TKI-resistant HCC, and its regulatory role in FA may underlie the TKI-resistant phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514672PMC
http://dx.doi.org/10.4251/wjgo.v16.i10.4244DOI Listing

Publication Analysis

Top Keywords

rho gtpase
12
tki resistance
12
expression arhgap12
12
bulk rna
12
hcc
9
gtpase activating
8
activating protein
8
tyrosine kinase
8
kinase inhibitors
8
hepatocellular carcinoma
8

Similar Publications

Many Gram-negative bacterial pathogens deploy type III effector proteins (T3Es) to manipulate host cellular processes and suppress immune responses. Increasing evidence suggests that certain T3Es mimic eukaryotic FFAT (two phenylalanines in an acidic tract) motifs, enabling interaction with vesicle-associated membrane protein (VAMP)-associated proteins (VAPs). These interactions likely help pathogens target and exploit host membrane contact sites.

View Article and Find Full Text PDF

A covalent inhibitor targeting Cys16 on RhoA in colorectal cancer.

Cell Chem Biol

September 2025

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Centre for Oncology and Im

RhoA is a key cancer driver and potential colorectal cancer (CRC) therapy target but remains undrugged clinically. Using activity-based protein profiling (ABPP) and mass spectrometry (MS), we identified CL16, a covalent inhibitor targeting the unique Cys16 on RhoA subfamily, which confers high specificity over other Rho family proteins. Cys16 is adjacent to the nucleotide-binding pocket and switch regions, which are critical for RhoA function.

View Article and Find Full Text PDF

During heart disease, the cardiac extracellular matrix (ECM) undergoes a structural and mechanical transformation. Cardiomyocytes sense the mechanical properties of their environment, leading to phenotypic remodeling. A critical component of the ECM mechanosensing machinery, including the protein talin, is organized at the cardiomyocyte costamere.

View Article and Find Full Text PDF

RhoA, a small GTPase, inhibits bacterial infection through regulated phagocytosis in the Chinese mitten crab, Eriocheir sinensis.

Fish Shellfish Immunol

September 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China. Electronic address: y

Small GTPase RhoA is a pivotal regulator of cytoskeletal dynamics and phagocytosis in mammalian phagocytes, yet its functional role in crustacean immunity remains poorly characterized. In this study, we identified and characterized RhoA from Eriocheir sinensis (designated EsRhoA), demonstrating its essential role in hemocyte phagocytosis and antibacterial defense. The EsRhoA gene encodes a 257-amino-acid protein containing a conserved RHO domain and displays over 90 % sequence similarity to orthologs in both vertebrates and invertebrates.

View Article and Find Full Text PDF

Rho GTPase-activating protein 29 (ARHGAP29) is an inhibitor of the Ras homolog family member A (RhoA)/Rho-associated protein kinase (ROCK) signaling pathway. Studies in non-melanoma cancer entities described that ARHGAP29 modulates the actin cytoskeleton, promoting tumor cell invasion. In melanoma, its function has been completely unknown.

View Article and Find Full Text PDF