Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: We created and validated a low-cost simulation model for robotic internal mammary artery (IMA) takedown.

Methods: The simulation model utilized a calf fetus thorax cavity stented open internally and secured to a table. The simulation model was validated at a 2-day robotic cardiac surgery workshop. Each participant harvested one IMA using the da Vinci Xi robot (Intuitive Surgical, Sunnyvale, CA, USA). We compared participant self-reported confidence at robotic IMA harvest before and after using the simulator.

Results: Our novel thorax-securing strategy resulted in a stable structure and allowed access to both IMAs from the same 3 ports. The cost to set up the first simulation model was $176 and $133 for every subsequent model. Fifty participants used the simulation model: 42 cardiothoracic surgery attendings and 8 fellows or residents. The feedback form response rate was 78% ( = 39). On the Likert scale, participants rated realism of the calf model to simulate robotic IMA harvesting (0 = , 10 = ) with a median of 8 out of 10 (interquartile range [IQR] 7 to 9). Participant confidence (0 = , 10 = ) in robotic IMA harvesting before and after using the simulator increased ( = 0.001) from a median of 5 (IQR 1 to 7) to 9 (IQR 7 to 10).

Conclusions: This robotic IMA harvest simulation model is affordable, realistic, and improved participant confidence in robotic IMA harvest. It may provide a valuable training tool for surgeons learning robotic coronary bypass surgery and allows for training frequency necessary to pass basic learning curves.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15569845241286012DOI Listing

Publication Analysis

Top Keywords

simulation model
28
robotic ima
20
confidence robotic
12
ima harvest
12
model
9
robotic
9
model robotic
8
robotic internal
8
internal mammary
8
mammary artery
8

Similar Publications

Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Objective: Due to its inherent high instability, the selection of fixation strategies for unilateral Denis type II sacral fractures remains a controversial challenge in the field of traumatic orthopedics. This study focuses on unilateral Denis type II sacral fractures. By applying three different fixation methods, it aims to explore their biomechanical properties and provide a theoretical basis for optimizing clinical fixation protocols.

View Article and Find Full Text PDF

Monopulse radar angle measurement technology is crucial for modern missile precision guidance systems due to its high accuracy and real-time capabilities. Cross-eye jamming (CEJ) is recognized as one of the most effective countermeasures against monopulse radar. However, traditional CEJ implementation requires complex amplitude and phase modulation through specialized hardware.

View Article and Find Full Text PDF