98%
921
2 minutes
20
The extensive deposits of calcium carbonate (CaCO) generated by marine organisms constitute the largest and oldest carbon dioxide (CO) reservoir. These organisms utilize macromolecules like peptides and proteins to facilitate the nucleation and growth of carbonate minerals, serving as an effective method for CO sequestration. However, the precise mechanisms behind this process remain elusive. In this study, we report the use of sequence-defined peptoids, a class of peptidomimetics, to achieve the accelerated calcite step growth kinetics with the molecular level mechanistic understanding. By designing peptoids with hydrophilic and hydrophobic blocks, we systematically investigated the acceleration in step growth rate of calcite crystals using in situ atomic force microscopy (AFM), varying peptoid sequences and concentrations, CaCO supersaturations, and the ratio of Ca/ HCO. Mechanistic studies using NMR, three-dimensional fast force mapping (3D FFM), and isothermal titration calorimetry (ITC) were conducted to reveal the interactions of peptoids with Ca and HCO ions in solution, as well as the effect of peptoids on solvation and energetics of calcite crystal surface. Our results indicate the multiple roles of peptoid in facilitating HCO deprotonation, Ca desolvation, and the disruption of interfacial hydration layers of the calcite surface, which collectively contribute to a peptoid-induced acceleration of calcite growth. These findings provide guidelines for future design of sequence-specific biomimetic polymers as crystallization promoters, offering potential applications in environmental remediation (such as CO sequestration), biomedical engineering, and energy storage where fast crystallization is preferred.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551417 | PMC |
http://dx.doi.org/10.1073/pnas.2412358121 | DOI Listing |
Proc Natl Acad Sci U S A
November 2024
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352.
The extensive deposits of calcium carbonate (CaCO) generated by marine organisms constitute the largest and oldest carbon dioxide (CO) reservoir. These organisms utilize macromolecules like peptides and proteins to facilitate the nucleation and growth of carbonate minerals, serving as an effective method for CO sequestration. However, the precise mechanisms behind this process remain elusive.
View Article and Find Full Text PDF