A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MRI and CT compatible asymmetric bilayer hydrogel electrodes for EEG-based brain activity monitoring. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The exploration of multi-dimensional brain activity with high temporal and spatial resolution is of great significance in the diagnosis of neurological disease and the study of brain science. Although the integration of electroencephalogram (EEG) with magnetic resonance imaging (MRI) and computed tomography (CT) provides a potential solution to achieve a brain-functional image with high spatiotemporal resolution, the critical issues of interface stability and magnetic compatibility remain challenging. Therefore, in this research, we proposed a conductive hydrogel EEG electrode with an asymmetrical bilayer structure, which shows the potential to overcome the challenges. Benefiting from the bilayer structure with different moduli, the hydrogel electrode exhibits high biological and mechanical compatibility with the heterogeneous brain-electrode interface. As a result, the impedance can be reduced compared with conventional metal electrodes. In addition, the hydrogel-based ionic conductive electrodes, which are free from metal conductors, are compatible with MRI and CT. Therefore, they can obtain high spatiotemporal resolution multi-dimensional brain information in clinical settings. The research outcome provides a new approach for establishing a platform for early diagnosis of brain diseases and the study of brain science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519644PMC
http://dx.doi.org/10.1038/s41378-024-00805-2DOI Listing

Publication Analysis

Top Keywords

brain activity
8
multi-dimensional brain
8
study brain
8
brain science
8
high spatiotemporal
8
spatiotemporal resolution
8
bilayer structure
8
brain
6
mri compatible
4
compatible asymmetric
4

Similar Publications