A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

scSwinTNet: A Cell Type Annotation Method for Large-Scale Single-Cell RNA-Seq Data Based on Shifted Window Attention. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The annotation of cell types based on single-cell RNA sequencing (scRNA-seq) data is a critical downstream task in single-cell analysis, with significant implications for a deeper understanding of biological processes. Most analytical methods cluster cells by unsupervised clustering, which requires manual annotation for cell type determination. This procedure is time-overwhelming and non-repeatable. To accommodate the exponential growth of sequencing cells, reduce the impact of data bias, and integrate large-scale datasets for further improvement of type annotation accuracy, we proposed scSwinTNet. It is a pre-trained tool for annotating cell types in scRNA-seq data, which uses self-attention based on shifted windows and enables intelligent information extraction from gene data. We demonstrated the effectiveness and robustness of scSwinTNet by using 399 760 cells from human and mouse tissues. To the best of our knowledge, scSwinTNet is the first model to annotate cell types in scRNA-seq data using a pre-trained shifted window attention-based model. It does not require a priori knowledge and accurately annotates cell types without manual annotation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3487174DOI Listing

Publication Analysis

Top Keywords

cell types
16
scrna-seq data
12
cell type
8
type annotation
8
based shifted
8
shifted window
8
annotation cell
8
manual annotation
8
types scrna-seq
8
data
6

Similar Publications