A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Method and Verification of Liquid Cooling Heat Dissipation Based on Internal Heat Source of Airborne Long-Focus Aerial Camera. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The traditional passive heat dissipation method has low heat dissipation efficiency, which is not suitable for the heat dissipation of the concentrated heat source inside the long-focal aerial camera, resulting in temperature level changes and temperature gradients in the optical system near the heat source, which seriously affect the imaging performance of the aerial camera. To solve this problem, an active heat dissipation method of liquid cooling cycle is proposed in this paper. To improve the solving efficiency and ensure simulation accuracy, a dynamic boundary information transfer method based on grid area weighting is proposed. The thermal simulation results show that the liquid cooling method reduces the heat source temperature by 70.12%, and the boundary temperature transfer error is 0.015%. The accuracy of thermal simulation is verified by thermal test, and the simulation error is less than 6.44%. In addition, the performance of the optical system is further analyzed, and the results show that the MTF of the optical system is increased from 0.077 to 0.194 under the proposed active liquid cooling cycle heat dissipation method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511532PMC
http://dx.doi.org/10.3390/s24206714DOI Listing

Publication Analysis

Top Keywords

heat dissipation
24
liquid cooling
16
heat source
16
aerial camera
12
dissipation method
12
optical system
12
heat
10
cooling cycle
8
thermal simulation
8
method
6

Similar Publications