Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Keloids are a common fibrotic disease of the skin, with the pathological hallmark of excessive extracellular matrix synthesis due to abnormal fibroblast activity. Since keloids clinically arise in areas of high mechanical tension, the mechanotransductory pathway may be attributed to its pathogenesis. We aimed to establish a preclinical platform to elucidate the underlying mechanism of keloid development and its clinical persistence.

Methods: We fabricated a mechanically stretchable polydimethylsiloxane cell culture platform; with its mimicry of the in vivo cyclic stretch of skeletal muscles, cells showed higher proliferation compared with conventional modalities.

Results: In response to mechanical strain, TGF-β and type 1 collagen showed significant increases, suggesting possible TGF-β/Smad pathway activation via mechanical stimulation. Protein candidates selected by proteomic analysis were evaluated, indicating that key molecules involved in cell signaling and oxidative stress were significantly altered. Additionally, the cytoskeletal network of keloid fibroblasts showed increased expression of its components after periodic mechanical stimulation.

Conclusions: Herein, we demonstrated and validated the existing body of knowledge regarding profibrotic mechanotransduction signaling pathways in keloid fibroblasts. Cyclic stretch, as a driving force, could help to decipher the tension-mediated biomechanical processes, leading to the development of optimized therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504861PMC
http://dx.doi.org/10.3390/biomedicines12102169DOI Listing

Publication Analysis

Top Keywords

keloid fibroblasts
12
cyclic stretch
8
mechanical
5
increased susceptibility
4
susceptibility mechanical
4
mechanical stretch
4
stretch drives
4
drives persistence
4
keloid
4
persistence keloid
4

Similar Publications

Locked nucleic acid-modified antisense oligonucleotides attenuate scar hyperplasia through targeted inhibition of CTGF.

Front Pharmacol

August 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.

Connective tissue growth factor (CTGF) is notably upregulated in scar tissue, making it a promising target for therapeutic intervention. Here, we have designed and screened an antisense oligonucleotide (ASO) that binds specifically to the exon five sequence of CTGF, with particular emphasis on the use of 2'-O-methoxyethyl (MOE) and locked nucleic acid (LNA) modifications to enhance stability and specificity. experiments demonstrated that both MOE-ASO#1 and LNA-ASO#1 significantly inhibited fibroblast proliferation and extracellular matrix protein expression.

View Article and Find Full Text PDF

Aberrant extracellular matrix (ECM) production by dermal fibroblasts drives fibrotic skin diseases, which has an adverse impact on the lives of patients. Current treatments are limited; therefore, the development of new antifibrotic strategies is necessary. The aim of the present study was to investigate zinc finger 469 (ZNF469) as a potential ECM regulator in skin fibrosis.

View Article and Find Full Text PDF

Therapeutic Potential of Compounds with High Affinity to BAG2 in Inhibiting Keloid Disease.

Biologics

August 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People's Republic of China.

Purpose: Targeting the distinct genetic and protein expression profiles of keloids necessitates the identification of novel therapeutic targets. This study was aimed to elucidate the role of Bcl-2-associated athanogene 2 (BAG2) in keloid pathology and identify compounds with high-affinity to BAG2.

Patients And Methods: Cell migration, and cell proliferation assays, along with flow cytometry, were used to evaluate the effects of BAG2 on keloid fibroblasts (KFs) derived from tissue samples of patients with abdominal or chest keloids.

View Article and Find Full Text PDF

Keloid is a trauma-induced fibroproliferative condition characterized by excessive extracellular matrix (ECM) deposition and aberrant keloid fibroblast activation, leading to physical, psychological, functional, and cosmetic impairments. This study investigates DNA methylation alterations at Long Interspersed Nuclear Element-1 (LINE-1) and Alu repetitive elements in keloid tissues compared to normal skin tissues. Methylation levels and patterns were analyzed in keloid (n = 38) and normal skin tissues (n = 32).

View Article and Find Full Text PDF

Nodular fasciitis is a benign, self-limiting, and rapidly proliferating fibroblastic/myofibroblastic lesion. Nodular fasciitis, in the head and neck region, in particular, poses significant diagnostic challenges due to its rapid growth and resemblance to malignant neoplasms. In this single-center observational study, we report on 50 patients who presented with nodular fasciitis in the head and neck region, with a male-to-female patient ratio of 1.

View Article and Find Full Text PDF