Article Synopsis

  • GPNMB is a protein linked to heart failure that increases in the heart after a myocardial infarction (MI), sourced mainly from bone-marrow-derived macrophages.
  • Genetic models show that lacking GPNMB leads to worse outcomes after MI, including higher mortality and heart dysfunction, while boosting its levels improves heart function.
  • GPNMB aids heart repair by enhancing heart muscle contraction and reducing fibroblast activation via the GPR39 receptor, highlighting its significance in cardiac recovery post-injury.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein initially identified in nonmetastatic melanomas and has been associated with human heart failure; however, its role in cardiac injury and function remains unclear. Here we show that GPNMB expression is elevated in failing human and mouse hearts after myocardial infarction (MI). Lineage tracing and bone-marrow transplantation reveal that bone-marrow-derived macrophages are the main source of GPNMB in injured hearts. Using genetic loss-of-function models, we demonstrate that GPNMB deficiency leads to increased mortality, cardiac rupture and rapid post-MI left ventricular dysfunction. Conversely, increasing circulating GPNMB levels through viral delivery improves heart function after MI. Single-cell transcriptomics show that GPNMB enhances myocyte contraction and reduces fibroblast activation. Additionally, we identified GPR39 as a receptor for circulating GPNMB, with its absence negating the beneficial effects. These findings highlight a pivotal role of macrophage-derived GPNMBs in post-MI cardiac repair through GPR39 signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s44161-024-00555-4DOI Listing

Publication Analysis

Top Keywords

gpnmb
8
role cardiac
8
cardiac repair
8
circulating gpnmb
8
bone-marrow macrophage-derived
4
macrophage-derived gpnmb
4
gpnmb protein
4
protein binds
4
binds orphan
4
orphan receptor
4

Similar Publications

The senescent cell (SC) fate is linked to aging, multiple disorders and diseases, and physical dysfunction. Senolytics, agents that selectively eliminate 30-70% of SCs, act by transiently disabling the senescent cell anti-apoptotic pathways (SCAPs), which defend those SCs that are pro-apoptotic and pro-inflammatory from their own senescence-associated secretory phenotype (SASP). Consistent with this, a JAK/STAT inhibitor, Ruxolitinib, which attenuates the pro-inflammatory SASP of senescent human preadipocytes, caused them to become "senolytic-resistant".

View Article and Find Full Text PDF

ObjectiveTo investigate the role and mechanism of long noncoding RNA LINKA (LncRNA LINKA) in hyperoxia-induced acute lung injury (HALI), specifically focusing on its impact on the GPNMB (glycoprotein nonmetastatic B protein)/HIF-1α (hypoxia-inducible factor 1-alpha) signaling pathway of apoptosis.MethodsAn experimental animal study was conducted using specific pathogen-free (SPF) male C57BL/6 mice and GPNMB knockout (KO) mice. Lung injury was assessed by measuring total protein in bronchoalveolar lavage fluid (BALF), lung wet/dry weight (W/D) ratio, serum levels of inflammatory (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)) and oxidative stress (malondialdehyde (MDA) and superoxide dismutase (SOD)) mediators, histopathological scoring (hematoxylin and eosin staining), apoptosis rate (terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay), and expression levels of GPNMB/HIF-1α pathway proteins (p-GPNMB, phosphorylated leucine-rich repeat kinase 2 (p-LRRK2), p-HIF-1α) and apoptosis regulators (BCL2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2)) via western blotting.

View Article and Find Full Text PDF

In-situ-formed TCM-inspired dual-function nanocomposite hydrogel for intraoperative hemostasis and postoperative recurrence prevention in hepatocellular carcinoma.

Mater Today Bio

October 2025

Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China.

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, with high postoperative recurrence rates due to occult micrometastases or minimal residual disease, markedly worsening the prognosis for HCC patients. Current therapies lack effective strategies to prevent recurrence, while traditional Chinese medicine (TCM) shows potential in delaying HCC progression. Combining a hemostatic hydrogel with nanoparticle-based delivery of active TCM components provides a strategy to enhance tumor recurrence prevention.

View Article and Find Full Text PDF

Metastasis remains the leading cause of cancer-related mortality, driven by complex interactions within the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play a pivotal role in metastatic progression, yet their molecular diversity and upstream regulators remain poorly defined. Glycoprotein nonmetastatic melanoma protein B (GPNMB), overexpressed in subsets of tumors including triple-negative breast cancer (TNBC), is implicated in epithelial-mesenchymal transition (EMT) and cancer stemness.

View Article and Find Full Text PDF

Monocytes/macrophages promote the repair of acutely injured muscle while contributing to dystrophic changes in chronically injured muscle in Duchenne muscular dystrophy (DMD) patients and animal models including and mice. To elucidate the molecular mechanisms underlying this functional difference, we compared the transcriptomes of intramuscular monocytes/macrophages from () uninjured muscles, acutely injured muscles, and dystrophic muscles, using single cell-based RNA sequencing (scRNA-seq) analysis. Our study identified multiple transcriptomically diverse monocyte/macrophage subclusters, which appear to be induced by the intramuscular microenvironment.

View Article and Find Full Text PDF