Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds.

Mar Drugs

Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macroalgae are known as abundant sources of phytochemicals, which offer a plethora of beneficial biological properties. Besides being the most notable classes of compounds found in macroalgae, phlorotannins, bromophenols, and terpenoids comprise some of the most relevant for their biological properties. Phlorotannins, mainly prevalent in brown algae and structurally characterized as complex polyphenolic compounds derived from phloroglucinol units, possess robust antioxidant, anti-inflammatory, antitumor, and cytotoxic activities, modulated by factors such as the degree of polymerization and environmental conditions. Bromophenols, halogenated compounds found in algae and other marine organisms, exhibit significant antioxidant and antiviral properties. Their diverse structures and bromination patterns contribute to their potential as therapeutic and chemical defense agents. Pigments (chemically described as primary terpenoids) play a critical role in light absorption and energy transfer in macroalgae and are divided into three main groups: (i) carotenoids, which are primarily found in brown algae and provide photoprotective and antioxidant benefits; (ii) chlorophylls, known for facilitating the conversion of light into biological energy; and (iii) phycobilins, which are mostly found in red algae and play important roles in light absorption and energy transfer, besides providing remarkable health benefits. Finally, secondary terpenoids, which are particularly abundant in red algae (e.g., the Rhodomelaceae family) are central to cellular interactions and exhibit significant antioxidant, antimicrobial, antidiabetic, and anti-inflammatory properties. This study represents a detailed analysis of the biosynthesis, structural diversity, and biological activities of these macroalgae metabolites, emphasizing their potential biological properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509156PMC
http://dx.doi.org/10.3390/md22100478DOI Listing

Publication Analysis

Top Keywords

biological properties
16
beneficial biological
8
compounds macroalgae
8
brown algae
8
exhibit antioxidant
8
light absorption
8
absorption energy
8
energy transfer
8
red algae
8
biological
6

Similar Publications

Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.

View Article and Find Full Text PDF

Navigating condensate micropolarity to enhance small-molecule drug targeting.

Nat Chem Biol

September 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.

View Article and Find Full Text PDF

ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.

View Article and Find Full Text PDF

Beyond Hemoglobin: A Review of Hemocyanin and the Biology of Purple Blood.

Zhongguo Ying Yong Sheng Li Xue Za Zhi

September 2025

PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH#2, Bhauti, Kanpur, Uttar Pradesh, India.

Hemocyanin is dissolved freely in hemolymph, the invertebrate blood substitute, in contrast to haemoglobin, which is encased in red blood cells. When oxygenated, this pigment gives mollusc and arthropod blood its characteristic blue or purple hue. This review article delves into the fascinating biology of hemocyanin, the copper-based oxygen-carrying protein responsible for "purple blood" in many invertebrates, contrasting its characteristics with the more familiar iron-based hemoglobin.

View Article and Find Full Text PDF

A numerical investigation of the kinematic and fluid dynamic behaviour of an intramuscular autoinjector designed for optimising injection efficiency.

Med Eng Phys

October 2025

Department of Mechanical Engineering, University of Cape Town, 7701, South Africa; Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, 7701, South Africa.

The usability and versatility of autoinjectors in managing chronic and autoimmune diseases have made them increasingly attractive in medicine. However, investigations into autoinjector designs require an understanding of the kinematic properties and fluid behaviour during injection. To optimise injection efficiency, this study develops a mathematical and computational fluid dynamics (CFD) model of an IM autoinjector by investigating the effects of viscosity, needle length, needle diameter, and medication volume on the injection process.

View Article and Find Full Text PDF