98%
921
2 minutes
20
Dynamic chitosan-based hydrogels with enhanced antioxidant activity were synthesized through the formation of reversible imine linkages with 5-methoxy-salicylaldehyde. These hydrogels exhibited a porous structure and swelling capacity, influenced by the crosslinking degree, as confirmed by SEM and POM analysis. The dynamic nature of the imine bonds was characterized through NMR, swelling studies in various media, and aldehyde release measurements. The hydrogels demonstrated significantly improved antioxidant activity compared to unmodified chitosan, as evaluated by the DPPH method. This research highlights the potential of developing pH-responsive chitosan-based hydrogels for a wide range of biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507920 | PMC |
http://dx.doi.org/10.3390/gels10100655 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland.
The multifunctional systems presented here introduce an innovative and deeply thought-out approach to the more effective and safer use of temozolomide (TMZ) in treating glioma. The developed hydrogel-based flakes were designed to address the issues of local GBL therapy, bacterial neuroinfections, and the bleeding control needed during tumor resection. The materials obtained comprise TMZ and vancomycin (VANC) loaded into cyclodextrin/polymeric capsules and embedded into gelatin/hyaluronic acid/chitosan-based hydrogel films cross-linked with genipin.
View Article and Find Full Text PDFACS Omega
September 2025
College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China. Electronic address:
Constructing a novel antibacterial platform is of great significance for inhibiting bacterial infections. In this work, we developed a composite hydrogel (CS/PPy/PDA hydrogel) by incorporating photothermal material polypyrrole (PPy), chitosan (CS) and polydopamine (PDA) into poly acrylamide (PAAM) hydrogel network. First, CS/PPy/PDA hydrogel could capture bacteria through strong electrostatic interactions, enhancing the contact between hydrogels and bacteria.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China. Electronic address:
Oral ulcers are a prevalent condition globally, causing significant pain and discomfort. The unique environment of the oral cavity, characterized by its humidity and dynamic nature, in conjunction with a diverse microbiome, presents challenges for traditional treatments for oral ulcers. Chitosan has emerged as a promising therapeutic agent for this condition.
View Article and Find Full Text PDFSci Rep
September 2025
Biomaterials and Bioengineering Lab, Department of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46001, Spain.
The recent emergence and global spread of the mpox virus (MPXV), formerly known as the monkeypox virus, underscores the urgent need for effective antiviral materials to combat this emerging zoonotic pathogen. This study evaluates the antiviral activity of five functional material films against vaccinia virus, a representative model of MPXV, by the TCID50 assay. The tested materials include two electrospun polyester fabrics functionalised with benzalkonium chloride (BAK) or soap, specifically designed for antiviral face masks.
View Article and Find Full Text PDF