Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: This study aimed to understand the collective impact of trace elements, vitamins, cholesterol, and prealbumin on patient outcomes in the intensive care unit (ICU) using an advanced artificial intelligence (AI) model for mortality prediction.

Methods: Data from ICU patients (December 2016 to December 2021), including serum levels of trace elements, vitamins, cholesterol, and prealbumin, were retrospectively analyzed using AI models. Models employed included category boosting (CatBoost), extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), and multilayer perceptron (MLP). Performance was evaluated using area under the receiver operating characteristic curve (AUROC), accuracy, precision, recall, and F1-score. The performance was evaluated using 10-fold crossvalidation. The SHapley Additive exPlanations (SHAP) method provided interpretability.

Results: CatBoost emerged as the top-performing individual AI model with an AUROC of 0.756, closely followed by LGBM, MLP, and XGBoost. Furthermore, the ensemble model combining these four models achieved the highest AUROC of 0.776 and more balanced metrics, outperforming all models. SHAP analysis indicated significant influences of prealbumin, Acute Physiology and Chronic Health Evaluation II score, and age on predictions. Notably, the ratios of selenium to age and low-density lipoprotein to total cholesterol also had a notable impact on the models' output.

Conclusion: The study underscores the critical role of nutrition-related parameters in ICU patient outcomes. Advanced AI models, particularly in an ensemble approach, demonstrated improved predictive accuracy. SHAP analysis offered insights into specific factors influencing patient survival, highlighting the need for broader consideration of these biomarkers in critical care management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049569PMC
http://dx.doi.org/10.1002/ncp.11238DOI Listing

Publication Analysis

Top Keywords

trace elements
12
elements vitamins
12
vitamins cholesterol
12
artificial intelligence
8
cholesterol prealbumin
8
patient outcomes
8
gradient boosting
8
performance evaluated
8
shap analysis
8
models
5

Similar Publications

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).

View Article and Find Full Text PDF

Ferric Reductase is a Key Factor in Regulating Iron Absorption by Blastocystis sp.

Acta Parasitol

September 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.

Purpose: This study aimed to identify and analyze the role of Ferric reductase inBlastocystis sp. subtype 2 (ST2) and explore the relationship between the parasite and iron metabolism.

Methods: The location of Ferric reductase in Blastocystis sp.

View Article and Find Full Text PDF

Background Elevated brain iron is a potential marker for neurodegeneration, but its role in predicting onset of mild cognitive impairment (MCI) and prospective cognitive trajectories remains unclear. Purpose To investigate how brain iron and amyloid-β (Aβ) levels, measured using quantitative susceptibility mapping (QSM) MRI and PET, help predict MCI onset and cognitive decline. Materials and Methods In this prospective study conducted between January 2015 and November 2022, cognitively unimpaired older adults underwent baseline QSM MRI.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF