Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid development of modern electronic devices increasingly requires thermal management materials with controllable electrical properties, ranging from conductive and dielectric to insulating, to meet the needs of diverse applications. However, highly thermally conductive materials usually have a high electrical conductivity. Intrinsically highly thermally conductive, but electrically insulating materials are still limited to a few kinds of materials. To overcome the electrical-thermal conductance trade-off, here, we report a facile Pechini-based method to prepare multiple core (metal)/shell (metal oxide) engineered fillers, such as aluminum-oxide-coated and beryllium-oxide-coated Ag microspheres. In contrast to the previous growth method which mainly focused on small-sized spheres with specific coating materials, our method combined with ultrafast joule heating treatment is more versatile and robust for varied-sized, especially large-sized core-shell fillers. Through size compounding, the as-synthesized core-shell-filled epoxy composites exhibit high isotropic thermal conductivity (∼3.8 W m K) while maintaining high electrical resistivity (∼10 Ω cm) and good flowability, showing better heat dissipation properties than commercial thermally conductive packaging materials. The successful preparation of these core-shell fillers endows thermally conductive composites with controlled electrical properties for emerging electronic package applications, as demonstrated in circuit board and battery thermal management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c09346DOI Listing

Publication Analysis

Top Keywords

thermally conductive
16
engineered fillers
8
overcome electrical-thermal
8
electrical-thermal conductance
8
conductance trade-off
8
thermal management
8
electrical properties
8
highly thermally
8
high electrical
8
core-shell fillers
8

Similar Publications

Developing intelligent robots with integrated sensing capabilities is critical for advanced manufacturing, medical robots, and embodied intelligence. Existing robotic sensing technologies are limited to recording of acceleration, driving torque, pressure feedback, and so on. Expanding and integrating with the multimodal sensors to mimic and even surpass the human feeling is substantially underdeveloped.

View Article and Find Full Text PDF

Substrate Contribution to Ultrafast Spin Dynamics in 2D van der Waals Magnets.

Phys Rev Lett

August 2025

University of York, School of Physics, Engineering and Technology, York YO10 5DD, United Kingdom.

We propose a model that is able to reproduce the type-II ultrafast demagnetization dynamics observed in 2D magnets. The spin system is coupled to the electronic thermal bath and is treated with atomistic spin dynamics, while the electron and phonon heat baths are described phenomenologically by coupled equations via the two-temperature model. Our proposed two-temperature model takes into account the effect of the heated substrate, which for 2D systems results in a slow demagnetization regime.

View Article and Find Full Text PDF

ObjectiveRecurrent varicose veins (RVVs) following open surgical procedures are common and present significant treatment challenges. Redo open surgery (rOS) presents risks leading to a need for alternative treatment options. This study compares the safety and efficacy of ultrasound-guided foam sclerotherapy (UGFS), used to treat recurrent reflux and remove neovascular and tributary venous networks in the thigh, to redo open surgery (rOS) for the treatment of C2r.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

Van der Waals (vdW) layered materials have gained significant attention owing to their distinctive structure and unique properties. The weak interlayer bonding in vdW layered materials enables guest atom intercalation, allowing precise tuning of their physical and chemical properties. In this work, a ternary compound, NiInSe (x = 0-0.

View Article and Find Full Text PDF