Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Our study investigates the effectiveness of Oxford Nanopore Technologies for accurate outbreak tracing by resequencing 33 isolates of a 3-year-long outbreak with Illumina short-read sequencing data as the point of reference. We detect considerable base errors through cgMLST and phylogenetic analysis of genomes sequenced with Oxford Nanopore Technologies, leading to the false exclusion of some outbreak-related strains from the outbreak cluster. Nearby methylation sites cause these errors and can also be found in other species besides Based on these data, we explore PCR-based sequencing and a masking strategy, which both successfully address these inaccuracies and ensure accurate outbreak tracing. We offer our masking strategy as a bioinformatic workflow (MPOA) to identify and mask problematic genome positions in a reference-free manner. Our research highlights limitations in using Oxford Nanopore Technologies for sequencing prokaryotic organisms, especially for investigating outbreaks. For time-critical projects that cannot wait for further technological developments by Oxford Nanopore Technologies, our study recommends either using PCR-based sequencing or using our provided bioinformatic workflow. We advise that read mapping-based quality control of genomes should be provided when publishing results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610573PMC
http://dx.doi.org/10.1101/gr.278848.123DOI Listing

Publication Analysis

Top Keywords

oxford nanopore
20
nanopore technologies
16
outbreak tracing
12
accurate outbreak
8
pcr-based sequencing
8
masking strategy
8
bioinformatic workflow
8
outbreak
5
oxford
5
nanopore
5

Similar Publications

Aims: This study aims to investigate the genomic profile of a multidrug-resistant Escherichia coli strain, 160-11H1, co-carrying an extended-spectrum β-lactamase (ESBL) and the plasmid-mediated mobile colistin resistance gene, mcr-5.

Methods And Results: The entire genome of the strain was sequenced using Illumina MiSeq and Oxford Nanopore platforms, and de novo assembly was performed using Unicycler. The genome size was 5 031,330 bp and comprised 5 140 coding sequences.

View Article and Find Full Text PDF

IBDV-SSA, a novel molecular approach for the recovery of infectious bursal disease virus whole genomes from FTA cards.

Microbiol Spectr

September 2025

United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Southeast Poultry Research Laboratories, US National Poultry Research Center, Athens, Georgia, USA.

Infectious bursal disease (IBD), a highly contagious viral disease in young chickens, poses significant economic losses due to high mortality and immunosuppression. While IBD virus (IBDV) virulence is influenced by multiple genes, whole-genome sequencing (WGS) of IBDV is crucial for defining the strain pathotype and clinical profile. Flinders Technology Associates (FTA) cards are convenient for field sample collection, but their filter paper matrix can hinder nucleic acid recovery, impacting sequencing efficiency.

View Article and Find Full Text PDF

sp. nov. and sp. nov., isolated from forest soil in Ireland.

Int J Syst Evol Microbiol

September 2025

School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.

Two yeast strains, PYCC 10015 and PYCC 10016, were isolated from soil from an Irish forest. Sequence analysis of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rRNA gene repeat, and the D1/D2 domain of the LSU rRNA gene, showed that they belong to the and genera of the order , but they did not exactly match any known species.

View Article and Find Full Text PDF

Sequencing of the 16S ribosomal RNA (rRNA) gene is an important tool in addition to conventional methods for the identification of bacterial pathogens in human infections. In polymicrobial samples, Sanger sequencing can produce uninterpretable chromatograms. This limitation can be overcome by Next Generation Sequencing (NGS) of the 16S rRNA gene.

View Article and Find Full Text PDF

Background: Clonotyping of immunoglobulin heavy chain (IGH) gene rearrangements is critical for diagnosis, prognostication, and measurable residual disease monitoring in chronic lymphocytic leukemia (CLL). Although short-read next-generation sequencing (NGS) platforms, such as Illumina MiSeq, are widely used, they face challenges in spanning full VDJ rearrangements. Long-read sequencing via Oxford Nanopore Technologies (ONT) offers a potential alternative using the compact and cost-effective flow cells.

View Article and Find Full Text PDF