Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
African Swine Fever (ASF) is an acute, highly contagious, and lethal disease caused by the African Swine Fever Virus (ASFV), posing a severe threat to the global pig farming industry. Although live vaccines are currently available, preventing and controlling ASF remains a considerable challenge. Several factors have impeded vaccine development, including the complexity of ASFV particles and the suppressive effects of its gene-encoded proteins on the host's immune system. This article delves into the immunological responses elicited by ASFV, encompassing both innate and adaptive immunity, and examines how ASFV evades host immune defenses. Special attention is given to the current progress in the development of ASFV subunit vaccines, including protein-based vaccines, DNA vaccines, and viral vector vaccines. The advantages, challenges, and future directions of different vaccine types are discussed, offering new perspectives and insights for the future of ASFV vaccine development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.107063 | DOI Listing |