Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Corn straws can produce bioethanol via simultaneous saccharification and co-fermentation (SSCF). However, identifying optimal combinations of operating parameters from numerous possibilities through a cost-effective strategy to improve SSCF efficiency and yield remains challenging. The eXtreme Gradient Boost (XGB) and deep neural network (DNN) models were constructed to accurately predict ethanol yield from only five input variables, achieving >83 % accuracy. Subsequently, the XGB and the DNN models were merged with the genetic algorithm (GA) as the new optimization strategies. Experimental validation showed that the new strategy optimize the efficiency and yield of the SSCF ethanol production system quickly and accurately. Moreover, the potential optimization mechanism was investigated through the comprehensive interpretability analysis for XGB and the microbial ecology analysis. Enzyme Solution Volume (61.7 %) dominated, followed by time (12.9 %), substrate concentration (10.4 %), temperature (7.7 %), and inoculum volume (7.3 %). This efficient and accurate algorithm design strategy can significantly reduce the time required to optimize biochemical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177027 | DOI Listing |