A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Self-Powered, Flexible, Wireless and Intelligent Human Health Management System Based on Natural Recyclable Materials. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Combining wearable sensors with modern technologies such as internet of things and big data to monitor or intervene in obesity-induced chronic diseases, such as obstructive sleep apnea, type II diabetes, cardiovascular diseases, and Alzheimer's disease, is of great significance to the self-health management of human beings. This study designed a loofah-conducting graphite four friction layer enhanced triboelectric nanogenerator (LG-TENG) and developed a health management system for human motion recognition and early warning of sleep breathing abnormalities. By uniformly spraying and depositing conductive graphite on the surface of the loofah and the elastic film cross-interlocking bending structure design, the signal strength of the LG-TENG has been improved by 390%. The stable output signal is still maintained after 1500 s of continuous operation at a frequency of 2 Hz. LG-TENG can realize accurate motion analysis by muscle contraction state. Combining different deep learning models resulted in 98.1% accuracy in recognizing seven categories of displacement speeds for an individual and 96.46% accuracy in recognizing seven categories of displacement speeds for three individuals. In addition, the sleep breathing monitoring early warning system was developed by integrating Bluetooth wireless transmission and upper computer analysis technology. This system aims to analyze and provide real-time warnings for sleep-breathing abnormalities. This research promotes an innovation of TENG technology based on the advantages of natural materials, recyclability and low cost. It offers new ideas for self-health management and scientific exercise for obese people, showing a broad application prospect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c02186DOI Listing

Publication Analysis

Top Keywords

health management
8
management system
8
self-health management
8
early warning
8
sleep breathing
8
accuracy recognizing
8
recognizing categories
8
categories displacement
8
displacement speeds
8
self-powered flexible
4

Similar Publications