Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial-induced oil degradation (MIOD) has a wide range of applications, such as microbial enhanced oil recovery and bioremediation of oil pollution. However, our understanding of MIOD is still far from complete. Particularly, how is the dynamics of degradation process at the microscale level with a single-cell resolution remains to be disclosed. In this work, using hexadecane droplets in water as a model system, we have studied the dynamics of hexadecane degradation by different strains, including PAO1, IMP68, O-2-2, and sp. DQ12-45-1b, at the microscale. Based on visualization of MIOD, the dynamics of MIOD can be characterized by a three-stage process, including adhesion, adaptation, and degradation stages. Although different strains showed similar three-stage dynamics of MIOD, the effective degradation rate varied and followed an order of PAO1 > O-2-2 > IMP68 > DQ12-45-1b under aerobic conditions. Different oxygen conditions were also tested, and the dynamics of MIOD was slowed down under anaerobic conditions in comparison to under aerobic conditions. Further investigations at the degradation stage revealed that biofilms formed at the oil-water interface enhanced oil degradation, but a prerequisite for such enhanced degradation is proper stimulation of biofilm cells in the course of biofilm formation. The findings in this work provided a detailed picture on the dynamics of MIOD at the microscale and would be beneficial for better applications of MIOD.IMPORTANCEMicrobial-induced oil degradation is environmental friendly and economic and has become a promising technique in the fields of enhanced oil recovery and remediation of crude oil-polluted environments. For better applications of microbial-induced oil degradation, understanding the degradation dynamics particularly at the microscale is crucial. In this study, we investigated the degradation dynamics of hexadecane oil droplets incubated with different strains, including PAO1, O-2-2, IMP68, and sp. DQ12-45-1b at the microscale by employing microdroplet-based methods and bacterial tracking techniques. The findings in this study provided a detailed picture on the dynamics of microbial-induced oil degradation at the microscale, which will deepen our understandings on the biodegradation mechanisms of alkanes and shed insights for developing more effective biodegradation techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619474PMC
http://dx.doi.org/10.1128/spectrum.01176-24DOI Listing

Publication Analysis

Top Keywords

oil degradation
24
microbial-induced oil
16
dynamics miod
16
degradation
14
enhanced oil
12
dynamics
10
oil
10
dynamics microbial-induced
8
degradation microscale
8
oil recovery
8

Similar Publications

The global accumulation of plastic waste, exceeding 360 million tonnes annually, represents a critical environmental challenge due to their widespread use and extreme recalcitrance in natural environments. Furthermore, the end-of-life processing of bioplastics, which are often marketed as eco-friendly, remains problematic, with biodegradation often requiring industrial conditions. Enzyme-based depolymerization of polyesters, such as polyethylene terephthalate (PET) and bioplastics (e.

View Article and Find Full Text PDF

Cell wall invertase improves grain nutrition via regulating sugar and hormone metabolism gene expression in transgenic soybean.

Ann Bot

September 2025

The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, China 264025.

Background And Aims: Cell wall invertases have multiple roles in plant growth and development, yet their biological functions in seed oil production are still not understood.

Methods: In the present study, the Oryza sativa (rice) cell wall invertase gene OsGIF1 (GRAIN INCOMPLETE FILLING 1) was ectopically expressed in Glycine max (Soybean) and its functions in grain yield and seed nutrition was investigated.

Key Results: We found that constitutive expression of OsGIF1 significantly improved biomass production, grain yield and seed nutrition in transgenic plants.

View Article and Find Full Text PDF

Streptococcus mutans, a key cause of dental caries, is not treated by conventional toothpaste, brushing, flossing, or antiseptic mouthwashes. This necessitates the development of enriched toothpaste. Cyanobacteria-derived phycoerythrin (PE) has antioxidant and antibacterial properties.

View Article and Find Full Text PDF

Objective: This study evaluated the effects and mechanisms of antioxidant and anti-inflammatory oils with a high omega-9:omega-6 ratio and a low omega-6:omega-3 ratio on post-extraction healing in rats.

Materials And Methods: A total of 128 Wistar rats were divided into four groups: Sham, Saline, Isolipidic, and Anti-inflammatory/Antioxidant. The animals received one of the following treatments: (1) 0.

View Article and Find Full Text PDF

This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.

View Article and Find Full Text PDF