A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dynamics of two feed forward genetic motifs in the presence of molecular noise. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the function of common motifs in gene regulatory networks is an important goal of systems biology. Feed forward loops (FFLs) are an example of such a motif. In FFLs, a gene (X) regulates another gene (Z) both directly and via an intermediary gene (Y). Previous theoretical studies have suggested several possible functions for FFLs, based on their transient responses to changes in input signals (using deterministic models) and their fluctuations around steady state (using stochastic models). In this paper we study stochastic models of the two most common FFLs, "coherent type 1" and "incoherent type 1". We incorporate molecular noise by treating DNA binding, transcription, translation, and decay as stochastic processes. By comparing the dynamics of these loops with models of alternative networks (in which X does not regulate Y), we explore how FFLs act to process information in the presence of noise. This work highlights the importance of incorporating realistic molecular noise in studying both the transient and steady-state behavior of gene regulatory networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2024.105352DOI Listing

Publication Analysis

Top Keywords

molecular noise
12
feed forward
8
gene regulatory
8
regulatory networks
8
stochastic models
8
gene
5
ffls
5
dynamics feed
4
forward genetic
4
genetic motifs
4

Similar Publications