98%
921
2 minutes
20
Salinity represents a fatal factor affecting the productivity of alfalfa. But the regulation of salinity tolerance lncRNAs and mRNAs remains largely unclear within alfalfa. For evaluating salinity stress resistance-related lncRNAs and mRNAs within alfalfa, we analyzed root transcriptomics in two alfalfa varieties, GN5 (salinity-tolerant) and GN3 (salinity-sensitive), after treatments with NaCl at 0 and 150 mM. There were altogether 117,677 lncRNAs and 172,986 mRNAs detected, including 1,466 lncRNAs and 2,288 mRNAs with significant differential expression in GN5/GN5, GN3/GN3, GN5/GN3, and GN5/GN3. As revealed by GO as well as KEGG enrichment, some ionic and osmotic stress-associated genes, such as , , , , , , , and , had up-regulated levels in GN5 compared with in GN3. In addition, NaCl treatment markedly decreased expression in GN5. According to co-expressed network analyses, six lncRNAs (TCONS_00113549, TCONS_00399794, TCONS_00297228, TCONS_00004647, TCONS_00033214 and TCONS_00285177) modulated 66 genes including , , , and in alfalfa roots, suggesting that these nine genes and six lncRNAs probably facilitated the different salinity resistance in GN5 . GN3. These results shed more lights on molecular mechanisms underlying genotype difference in salinity tolerance among alfalfas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490228 | PMC |
http://dx.doi.org/10.7717/peerj.18236 | DOI Listing |
Microbiol Resour Announc
September 2025
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
We report the complete genome sequence of strain MNA2.1, isolated from coastal sediments of the Berre lagoon, France. The genome consists of a 3,866,286 bp circular chromosome and a megaplasmid of 715,144 bp.
View Article and Find Full Text PDFiScience
September 2025
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Biology, College of Natural and Computational Sciences Mizan-Tepi University Tepi Ethiopia.
Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria and to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDF