Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Mature rapeseed pods typically shatter when harvested, resulting in approximately 8-12% yield loss. Adverse weather conditions and mechanized harvesting can diminish pod yield by up to 50%, primarily owing to delays in harvesting and mechanical collisions. The pod shatter resistance index (PSRI) assesses pod damage. Recent research focused on comparing pod shatter resistance among varieties, evaluating methods, and studying gene knockout mechanisms. However, there remains a pressing need to broaden the scope of research. In particular, it is essential to recognize that pod shatter, a complex trait, influenced by genetics, environment, agronomic practices, and harvest techniques. Future studies should integrate these factors to develop comprehensive strategies to mitigate pod shatter, enhancing rapeseed yields and agricultural mechanization. This review explores factors affecting pod shatter resistance and strategies to improve it.

Methodology: Scoping literature review that adhered to the methodological framework for systematic reviews was performed using search engines such as Google Scholar, Web of Science, and the Chinese National Knowledge Infrastructure. This review aimed to identify pertinent articles, which were subsequently subjected to thorough screening and evaluation. The protocol for this literature review involved the following key steps: definition of research questions, development of a search strategy, development of data extraction strategy, synthesis of the extracted data, and organization and analysis of the extracted data.

Results: The review presents strategies for enhancing rapeseed yield during mechanized harvesting, focusing on four key areas: (i) selecting and breeding shatter-resistant varieties using DNA markers to establish a robust germplasm resource; (ii) optimizing cultivation technologies and agronomic measures to elicit favorable interactions between compact plant-type genotypes and the environment, thereby facilitating nutrient-related regulatory mechanisms of rapeseed pods to improve pod dry weight and resistance; (iii) innovating combine header design and structure to better suit rapeseed harvesting; and (iv) providing training for operators to enhance their harvesting skills. These comprehensive measures aim to minimize yield loss, increase production efficiency.

Conclusion: To effectively reduce yield loss during mechanized harvesting of rapeseed, it is crucial to enhance resistance to pod shattering by addressing both internal physiological factors and external environmental conditions. This requires a holistic approach that includes genetic improvements, optimization of ecological conditions, careful cultivation management, and precise harvesting timing, along with ongoing research into traits related to machine harvesting to boost production efficiency and sustainability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491062PMC
http://dx.doi.org/10.7717/peerj.18105DOI Listing

Publication Analysis

Top Keywords

pod shatter
20
yield loss
12
mechanized harvesting
12
shatter resistance
12
pod
10
pod shattering
8
rapeseed pods
8
harvesting
8
enhancing rapeseed
8
literature review
8

Similar Publications

Uncovering a stable QTL and candidate gene for rapeseed pod shatter resistance.

Mol Breed

September 2025

Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China.

Unlabelled: Rapeseed pods are prone to dehiscence, resulting in yield loss at maturity. In the present study, we investigated the shatter resistance index (SRI) of 280 doubled haploid (DH) lines derived from a cross between ZS11 (susceptible line) and R11 (resistant line). Based on the phenotypic data obtained from four environments and a high-density genetic map, a significant QTL () for shatter resistance on A06 chromosome were stably detected.

View Article and Find Full Text PDF

Mustard, a major source of edible and industrial grade oils in the Indian subcontinent and various regions of Australia, Eastern Europe, and Canada, is also a protein resource for the animal feed industry. Silique and seed size are key traits for mustard improvement, but their inheritance mechanisms are not fully understood. We evaluated 92 inbred lines for silique length, seeds per silique, seed size, and rupture energy required to shatter a pod at three levels of nitrogen application in two crop seasons.

View Article and Find Full Text PDF

Soybean domestication has been essential for crop evolution, adaptation, and modern breeding. Despite advancements in understanding soybean genetics, the genetic basis of DRTs has yet to be fully explored, particularly in the context of genome-wide association studies (GWASs) and gene interaction analyses (epistasis). This study evaluated 198 diverse soybean accessions using 23,574 high-quality SNPs obtained via ddRAD-seq.

View Article and Find Full Text PDF

Ballistic seed dispersal (ballochory) involves the autonomous explosive release of seeds from adult plants. The unconventional mechanics of this strategy have understandably drawn considerable scientific attention. The explosive release of seeds is achieved by a variety of physical mechanisms but broadly involves the rapid coiling or shattering of seed pods to transfer kinetic energy to seeds, facilitated largely by either the evaporation or absorption of water in seed pod tissues.

View Article and Find Full Text PDF