Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Aerobic exercise capacity is an independent predictor of mortality in dilated cardiomyopathy (DCM), but the central mechanisms contributing to exercise intolerance in DCM are unknown. The aim of this study was to characterize coronary microvascular function in DCM and determine if cardiovascular magnetic resonance (CMR) measures are associated with aerobic exercise capacity.

Methods: Prospective case-control comparison of adults with DCM and matched controls. Adenosine-stress perfusion CMR to assess cardiac structure, function and automated inline myocardial blood flow quantification, and cardiopulmonary exercise testing to determine peak VO was performed. Pre-specified multivariable linear regression, including key clinical and cardiac variables, was undertaken to identify independent associations with peak VO.

Results: Sixty-six patients with DCM (mean age 61 years, 47 male) were propensity-matched to 66 controls (mean age 59 years, 47 male) based on age, sex, body mass index, and diabetes. DCM patients had markedly lower peak VO (19.8 ± 5.5 versus 25.2 ± 7.3 mL/kg/min; P < 0.001). The DCM group had greater left ventricular (LV) volumes, lower systolic function, and more fibrosis compared to controls. In the DCM group, there was similar rest but lower stress myocardial blood flow (1.53 ± 0.49 versus 2.01 ± 0.60 mL/g/min; P < 0.001) and lower myocardial perfusion reserve (MPR) (2.69 ± 0.84 versus 3.15 ± 0.84; P = 0.002). Multivariable linear regression demonstrated that LV ejection fraction, extracellular volume fraction, and MPR, were independently associated with percentage-predicted peak VO in DCM (R = 0.531, P < 0.001).

Conclusion: In comparison to controls, DCM patients have lower stress myocardial blood flow and MPR. In DCM, MPR, LV ejection fraction, and fibrosis are independently associated with aerobic exercise capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647499PMC
http://dx.doi.org/10.1016/j.jocmr.2024.101108DOI Listing

Publication Analysis

Top Keywords

coronary microvascular
8
exercise capacity
8
dilated cardiomyopathy
8
aerobic exercise
8
dcm
6
exercise
5
association coronary
4
microvascular dysfunction
4
dysfunction exercise
4
capacity dilated
4

Similar Publications

Coronary microvascular disease has been found to increase the incidence of the composite endpoint for cardiovascular events and affect coronary revascularization. Coronary microvascular disease is often accompanied by epicardial disease, and despite successful revascularization and optimal medications, coronary microvascular disease may lead to reduced exercise tolerance and worsening clinical symptoms. Moreover, despite advances in percutaneous coronary intervention for coronary revascularization, the management of microvascular obstruction in reperfused myocardial tissue remains challenging and is a high-risk procedure.

View Article and Find Full Text PDF

Background: While the invasive index of microcirculation resistance (IMR) remains the gold standard for diagnosing coronary microvascular dysfunction (CMD), its clinical adoption is limited by procedural complexity and cost. Angiography-based IMR (Angio-IMR), a computational angiography-based method, offers a promising alternative. This study evaluates the diagnostic efficacy of Angio-IMR for CMD detection in angina pectoris (AP).

View Article and Find Full Text PDF

Protein kinase C and endothelial dysfunction in select vascular diseases.

Front Cardiovasc Med

August 2025

Department of Surgery, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.

Protein kinases have crucial roles in intracellular signal transduction pathways that affect a wide range of biochemical processes, including apoptosis, metabolism, proliferation, and protein synthesis. Vascular endothelial cells are important regulators of vasomotor tone, tissue/organ perfusion, and inflammation. Since its discovery in the late 1970s, a growing body of literature implicates protein kinase C (PKC) in pathways involving angiogenesis, endothelial permeability, microvascular tone, and endothelial activation.

View Article and Find Full Text PDF

Right ventricular (RV) failure is the primary cause of death among patients with pulmonary arterial hypertension (PAH). Patients with congenital heart disease-associated PAH (CHD-PAH) demonstrate improved outcomes compared to patients with other forms of PAH, which is related to the maintenance of an adaptively hypertrophied RV. In an ovine model of CHD-PAH, we aimed to elucidate the cellular, microvascular, and transcriptional adaptations to congenital pressure overload that support RV function.

View Article and Find Full Text PDF