98%
921
2 minutes
20
Introduction: The field of forensic DNA analysis has undergone rapid advancements in recent decades. The integration of massively parallel sequencing (MPS) has notably expanded the forensic toolkit, moving beyond identity matching to predicting phenotypic traits and biogeographical ancestry. This shift is of particular significance in cases where conventional DNA profiling fails to identify a single suspect. Supplementing forensic analyses with estimated biological age may be valuable but involves a complex and time-consuming DNA methylation analysis. This study explores and validates the performance of a comprehensive forensic third-generation sequencing assay utilizing Oxford Nanopore Technologies (ONT) in an adaptive and direct sequencing approach. We incorporated the most widely used forensic markers, i.e., STRs, SNPs, InDels, mitochondrial DNA (mtDNA), and two methylation-based clock classifiers, thereby combining forensic genetic and epigenetic analysis in one single workflow.
Methods And Results: In our investigation, DNA from six anonymous individuals was sequenced using the ONT standard adaptive direct sequencing approach, reaching a mean percentage of on-target reads ranging from 6.6 % to 7.7 % per sample. ONT data was compared to standard MPS data and Illumina EPIC DNA methylation profiles. Basecalling employed recommended ONT software packages. TREAT was used for ONT-based analysis of autosomal and Y-chromosome STRs, achieving 90-92 % correct calls depending on allelic read depth thresholds. InDel analyses for two lower-quality samples proved challenging due to inadequate read depth, while the remaining four samples significantly contributed to the observed percentage markers (60.9 %) and correct calls (97.8 %). SNP analysis achieved a 98 % call rate, with only two mismatches and two missed alleles. ONT-generated DNA methylation data demonstrated Pearson's correlation coefficients with EPIC data ranging from 0.67 to 0.97 for Horvath's clock. Additional age-associated markers exhibited Pearson's correlation coefficients with chronological age between 0.14 (ELOVL2) and 0.96 (FHL2) at read depths of <30 and <20, respectively. Despite excluding mtDNA from our targeted sequencing approach, adaptive proof-reading fragments covered the complete mtDNA with an average read depth of 21-72, showing 100 % concordance with reference data.
Discussion: Our exploratory study using ONT adaptive sequencing for conventional forensic and age associated DNA methylation markers showed high sequencing accuracy for a significant number of markers, showcasing ONT as a promising (epi)genetic forensic method. Future studies must address three critical aspects: determining clear quantity and quality measures and detection thresholds for accuracy, optimizing input DNA quantity for forensic casework expectations, and addressing ethical considerations associated with phenotype and ancestry analysis to prevent ethnic biases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsigen.2024.103154 | DOI Listing |
J Biomed Sci
September 2025
Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.
View Article and Find Full Text PDFJ Assist Reprod Genet
September 2025
Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.
Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).
Nat Genet
September 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.
View Article and Find Full Text PDFNature
September 2025
Centre for Evolution and Cancer, Institute of Cancer Research, London, UK.
Cancer development and response to treatment are evolutionary processes, but characterizing evolutionary dynamics at a clinically meaningful scale has remained challenging. Here we develop a new methodology called EVOFLUx, based on natural DNA methylation barcodes fluctuating over time, that quantitatively infers evolutionary dynamics using only a bulk tumour methylation profile as input. We apply EVOFLUx to 1,976 well-characterized lymphoid cancer samples spanning a broad spectrum of diseases and show that initial tumour growth rate, malignancy age and epimutation rates vary by orders of magnitude across disease types.
View Article and Find Full Text PDFSci Justice
September 2025
School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa. Electronic address:
A compound marker integrates two or more genetic markers into a single assay. The application of compound markers enhances the predictive accuracy of genetic testing by leveraging the strengths of different genetic variations while mitigating the limitations of individual markers. Compound markers include SNP-SNPs, SNP-STRs, DIP-SNPs, DIP-STRs, Multi-In/Dels, CpG-SNPs, CpG-STRs/CpG-In/Del, and Methylation-Microhaplotypes.
View Article and Find Full Text PDF