Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiac arrhythmias are the leading cause of death and pose a huge health and economic burden globally. Electrocardiography (ECG) is an effective technique for the diagnosis of cardiovascular diseases because of its noninvasive and cost-effective advantages. However, traditional ECG analysis relies heavily on the clinical experience of physicians, which can be challenging and time-consuming to produce valid diagnostic results. This work proposes a new hybrid deep learning model that combines convolutional neural network (CNN) and bidirectional gated recurrent unit (BiGRU) with multi-head attention (CBGM model). Specifically, the model consists of seven convolutional layers with varying filter sizes (4, 16, 32, and 64) and three pooling layers, respectively, while the BiGRU module includes two layers with 64 units each followed by multi-head attention (8-heads). The combination of CNN and BiGRU effectively captures spatio-temporal features of ECG signals, with multi-head attention comprehensively extracted global correlations among multiple segments of ECG signals. The validation in the MIT-BIH arrhythmia database achieved an accuracy of 99.41%, a precision of 99.15%, a specificity of 99.68%, and an F1-Score of 99.21%, indicating its robust performance across different evaluation metrics. Additionally, the model's performance was evaluated on the PTB Diagnostic ECG Database, where it achieved an accuracy of 98.82%, demonstrating its generalization capability. Comparative analysis against previous methods revealed that our proposed CBGM model exhibits more higher performance in automatic classification of arrhythmia and can be helpful for assisting clinicians by enabling real-time detection of cardiac arrhythmias during routine ECG screenings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489693PMC
http://dx.doi.org/10.1038/s41598-024-75531-wDOI Listing

Publication Analysis

Top Keywords

multi-head attention
12
hybrid deep
8
deep learning
8
cardiac arrhythmias
8
cbgm model
8
ecg signals
8
database achieved
8
achieved accuracy
8
ecg
7
learning network
4

Similar Publications

In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.

View Article and Find Full Text PDF

Introduction: Accurately predicting tumor cell line responses to therapeutic drugs is essential for personalized cancer treatment. Current methods using bulk cell data fail to fully capture tumor heterogeneity and the complex mechanisms underlying treatment responses.

Methods: This study introduces a novel method, ATSDP-NET (Attention-based Transfer Learning for Enhanced Single-cell Drug Response Prediction), which combines bulk and single-cell data.

View Article and Find Full Text PDF

Single-cell multi-omics technologies are pivotal for deciphering the complexities of biological systems, with Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) emerging as a particularly valuable approach. The dual-modality capability makes CITE-seq particularly advantageous for dissecting cellular heterogeneity and understanding the dynamic interplay between transcriptomic and proteomic landscapes. However, existing computational models for integrating these two modalities often struggle to capture the complex, non-linear interactions between RNA and antibody-derived tags (ADTs), and are computationally intensive.

View Article and Find Full Text PDF

The personalization of cancer treatment through drug combinations is critical for improving healthcare outcomes, increasing effectiveness, and reducing side effects. Computational methods have become increasingly important to prioritize synergistic drug pairs because of the vast search space of possible chemicals. However, existing approaches typically rely solely on global molecular structures, neglecting information exchange between different modality representations and interactions between molecular and fine-grained fragments, leading to limited understanding of drug synergy mechanisms for personalized treatment.

View Article and Find Full Text PDF

Multi-modal data fusion plays a critical role in enhancing the accuracy and robustness of perception systems for autonomous driving, especially for the detection of small objects. However, small object detection remains particularly challenging due to sparse LiDAR points and low-resolution image features, which often lead to missed or imprecise detections. Currently, many methods process LiDAR point clouds and visible-light camera images separately, and then fuse them in the detection head.

View Article and Find Full Text PDF