Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

4D cone-beam computed tomography (CBCT) plays a critical role in adaptive radiation therapy for lung cancer. However, extremely sparse sampling projection data will cause severe streak artifacts in 4D CBCT images. Existing deep learning (DL) methods heavily rely on large labeled training datasets which are difficult to obtain in practical scenarios. Restricted by this dilemma, DL models often struggle with simultaneously retaining dynamic motions, removing streak degradations, and recovering fine details. To address the above challenging problem, we introduce a Deep Prior Image Constrained Motion Compensation framework (DPI-MoCo) that decouples the 4D CBCT reconstruction into two sub-tasks including coarse image restoration and structural detail fine-tuning. In the first stage, the proposed DPI-MoCo combines the prior image guidance, generative adversarial network, and contrastive learning to globally suppress the artifacts while maintaining the respiratory movements. After that, to further enhance the local anatomical structures, the motion estimation and compensation technique is adopted. Notably, our framework is performed without the need for paired datasets, ensuring practicality in clinical cases. In the Monte Carlo simulation dataset, the DPI-MoCo achieves competitive quantitative performance compared to the state-of-the-art (SOTA) methods. Furthermore, we test DPI-MoCo in clinical lung cancer datasets, and experiments validate that DPI-MoCo not only restores small anatomical structures and lesions but also preserves motion information.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3483451DOI Listing

Publication Analysis

Top Keywords

prior image
12
deep prior
8
image constrained
8
constrained motion
8
motion compensation
8
lung cancer
8
anatomical structures
8
dpi-moco
6
dpi-moco deep
4
image
4

Similar Publications

Objective: Identify social/metabolic risk factors associated with subsequent diagnosis of adrenal adenoma.

Design: Population-based historical case-control study.

Methods: Cases were adult patients diagnosed with an adrenal adenoma between 2005-2017 with no overt hormone excess.

View Article and Find Full Text PDF

Background: Stroke is a leading cause of death and disability globally, with frequent cognitive sequelae affecting up to 60% of stroke survivors. Despite the high prevalence of post-stroke cognitive impairment (PSCI), early detection remains underemphasized in clinical practice, with limited focus on broader neuropsychological and affective symptoms. Stroke elevates dementia risk and may act as a trigger for progressive neurodegenerative diseases.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF

Purpose: Crohn's disease (CD) is characterized by enteric inflammation, often resulting in strictures and penetrating complications, which may alter patient management prior to the initiation of biologic therapy. Our aim is to assess the frequency of missed stricturing and internal penetrating complications in CD patients on computed tomography enterography (CTE) and magnetic resonance enterography (MRE) performed prior to anti-TNF therapy.

Methods: We retrospectively reviewed patients from two tertiary centers who underwent CTE\MRE within six months before starting anti-TNF therapy.

View Article and Find Full Text PDF