98%
921
2 minutes
20
In this paper, an electrochemical biosensor based on a cadmium telluride/polypyrrole (CdTe/PPy) nanocomposite was developed for the detection of MUC1 with high selectivity and sensitivity. Results indicate that the CdTe/PPy nanocomposite is modified on the surface of the glassy carbon electrode (GCE), which affords a large surface area for immobilizing cap-DNA, ensuring its high selectivity and sensitivity. Next, CdTe-linked sig-DNA (MUC1 aptamer) was introduced, allowing the MUC1 aptamer to hybridize with cap-DNA. CdTe is a signal amplification element used to generate a differential pulse voltammetry (DPV) signal. Conceivably, target MUC1 detection was based on current signal change due to concentration change in the signal amplification element CdTe. In the presence of MUC1, the MUC1 aptamer specifically binds to MUC1, resulting in the release of CdTe-sig-DNA from the electrode surface and a decrease in peak current. Under optimized experimental conditions, the electrochemical biosensor is highly selective, sensitive, stable, and reproducible for MUC1 ranging from 0.1 nM to 100 nM with a detection limit of 0.05 nM (S/N = 3). Therefore, the electrochemical biosensor has potential applications in medical disease diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ay01544d | DOI Listing |
Anal Chem
September 2025
Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China.
Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Department of Physics & Engineering Physics, Morgan State University, Baltimore, MD 21251, USA.
Nanoscale biosensors have gained attention in recent years due to their unique characteristics and size. Manufacturing steps, cost, and other shortcomings limit the widespread use and commercialization of nanoscale electrodes. In this work, a nano-size electrode fabricated by directed electrochemical nanowire assembly and parylene-C insulation is introduced.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFAnal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; Department of Food Science & Technology, School of Agriculture & Biology, Shanghai JiaoTong University, Shanghai 200240, China. Electronic address:
Umami is one of the five fundamental tastes perceived by individuals during food consumption. Umami substances are vital constituent in food with directly affecting taste profiles and food flavor characteristics, thereby significantly influencing consumer perception and satisfaction. Consequently, the development of effective evaluation methodologies for umami substances holds significance for ensuring food quality, enhancing pleasant food attributes, and fostering advancements within the food industry.
View Article and Find Full Text PDF