Fine-tuning the side-chain length of iridium(III) complexes for enhanced Photophysical properties in Cancer Theranostics.

J Inorg Biochem

Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610000, PR China. Electronic address:

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyclometalated iridium(III) complexes have emerged as versatile candidates for cancer theranostics, offering integrated diagnostic imaging and potent singlet oxygen (O) generation for photodynamic therapy (PDT). However, their application has been limited by subdued photoluminescence, primarily due to intramolecular motion-induced excited energy dissipation. In this study, we address these limitations through the design and synthesis of five novel iridium(III) complexes: IrC2, IrC4, IrC6, IrC8, and IrC12. Our approach employs meticulous side-chain extending strategy to modulate side-chain length, thereby reducing intramolecular motion and significantly enhancing both one- and three-photon emissions and O production in the aggregated state. Detailed photophysical investigations, supported by crystallographic insights, reveal that side-chain elongation substantially amplifies these properties. Among the synthesized complexes, IrC8 stands out as a superior candidate for image-guided photodynamic therapy in cellular and 3D tumor spheroid models. This investigation pioneers the simultaneous enhancement of dual-photon emissions and PDT efficacy through a novel side-chain extension strategy in iridium(III) complexes, paving the way for their translational application in clinical theranostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2024.112760DOI Listing

Publication Analysis

Top Keywords

iridiumiii complexes
16
side-chain length
8
cancer theranostics
8
photodynamic therapy
8
complexes
5
fine-tuning side-chain
4
iridiumiii
4
length iridiumiii
4
complexes enhanced
4
enhanced photophysical
4

Similar Publications

Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.

View Article and Find Full Text PDF

Platinum-group metal half-sandwich complexes are considered to be potential replacements of the clinically widely used platins which have several side effects and tend to cause resistance to develop. In our previous works, we used a range of 2-pyridyl-substituted N- and C-glycosyl heterocycles as N,N-chelating ligands to prepare ruthenium(II), osmium(II), iridium(III) and rhodium(III) polyhapto arene/arenyl half-sandwich complexes. Some of these complexes, particularly with the C-glucopyranosyl isoxazole derived ligand in its O-perbenzoylated form, exhibited greater anticancer efficiency than cisplatin and had minimal or negligible effects on non-transformed fibroblasts.

View Article and Find Full Text PDF

Cystic fibrosis (CF) arises from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Monitoring I transport serves as a critical approach for evaluating CFTR function in live cells, providing a foundation for the development of diagnostic tools and therapeutic treatments. Here, we report an iridium(iii) complex () for the selective and pH-independent imaging of intracellular I.

View Article and Find Full Text PDF

In this study, we report the design and synthesis of two luminescent polypyridyl iridium(III) complexes, [Ir(C^N)(N^N)]Cl (Ir1 and Ir2), for the simultaneous detection of Al⁺ and F ions. In these complexes, C^N represents a cyclometalated 2-phenylbenzimidazole (Ph-benz) ligand, while N^N corresponds to 2,2'-bipyridine derivatives, specifically, 2,2'-bipyridine-4,4'-dicarboxylic acid in Ir1 and diethyl[2,2'-bipyridine]-4,4'-dicarboxylate in Ir2. The interaction of the ─NH group of Ph-benz and the ─COOH group of the bipyridine ligand with F and Al⁺ ion induces distinct photoluminescence changes, enabling selective and sensitive detection of both analytes.

View Article and Find Full Text PDF

The supramolecular host-guest interaction between heteroleptic iridium(iii) complexes and cucurbit[10]uril (Q[10]) in an aqueous medium was investigated in this work. Both studied iridium complexes, [Ir(ppy)(bpy-(CHO))] (complex 1) and [Ir(ppy)(bpy-(COOH))] (complex 2), possessed two phenylpyridine ligands and a single R-bipyridine ligand. The formation of the encapsulated species (Q[10]·1 and Q[10]·2) was demonstrated by H NMR and luminescence studies.

View Article and Find Full Text PDF