Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sm-ring assembly is important for the biogenesis, stability, and function of uridine-rich small nuclear RNAs (U snRNAs) involved in pre-mRNA splicing and histone pre-mRNA processing. Sm-ring assembly is cytoplasmic and dependent upon the Sm-site sequence and structural motif, ATP, and (SMN) protein complex. While RNAs other than U snRNAs were previously shown to associate with Sm proteins, whether this association follows Sm-ring assembly requirements is unknown. We systematically identified Sm-sites within the human and mouse transcriptomes and assessed whether these sites can accept Sm-rings. In addition to snRNAs, Sm-sites are highly prevalent in the 3' untranslated regions of long messenger RNAs. RNA immunoprecipitation experiments confirm that Sm-site containing mRNAs associate with Sm proteins in the cytoplasm. In modified Sm-ring assembly assays, Sm-site containing RNAs, from either bulk polyadenylated RNAs or those transcribed , specifically associate with Sm proteins in an Sm-site and ATP-dependent manner. In cell and animal models of Spinal Muscular Atrophy (SMA), mRNAs containing Sm-sites are downregulated, suggesting reduced Sm-ring assembly on these mRNAs may contribute to SMA pathogenesis. Together, this study establishes that Sm-site containing mRNAs can accept Sm-rings and identifies a novel mechanism for Sm proteins in regulation of cytoplasmic mRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482833PMC
http://dx.doi.org/10.1101/2024.10.09.617433DOI Listing

Publication Analysis

Top Keywords

sm-ring assembly
20
sm-site mrnas
12
accept sm-rings
12
associate proteins
12
mrnas accept
8
spinal muscular
8
muscular atrophy
8
rnas snrnas
8
sm-site
6
sm-ring
5

Similar Publications

Sm-ring assembly is important for the biogenesis, stability, and function of uridine-rich small nuclear RNAs (U snRNAs) involved in pre-messenger RNA (mRNA) splicing and histone pre-mRNA processing. Sm-ring assembly is cytoplasmic and dependent upon the Sm-site sequence and structural motif, ATP, and Survival motor neuron (SMN) protein complex. While RNAs other than U snRNAs were previously shown to associate with Sm proteins, whether this association follows Sm-ring assembly requirements is unknown.

View Article and Find Full Text PDF

U7 snRNA is a 60 nucleotide component of U7 snRNP, a multisubunit endonuclease that cleaves precursors of metazoan replication-dependent histone mRNAs at the 3' end, hence generating mature histone mRNAs. The Sm site in U7 snRNA differs from the Sm site in spliceosomal snRNAs and promotes the assembly of a unique Sm ring containing Lsm10 and Lsm11 instead of the spliceosomal SmD1 and SmD2 proteins. While the spliceosomal-type Sm site is recognized by Gemin5, a subunit of the SMN complex, the identity of the protein that recognizes the unusual Sm site of U7 snRNA resulting in the incorporation of Lsm10 and Lsm11 has not been determined.

View Article and Find Full Text PDF

Eukaryotes harbor both Sm-type and Lsm-type heteroheptameric rings, which are essential in RNA metabolism. Despite their similar subunits and evolutionary ties, they interact with RNA in distinct ways, functioning as scaffolds and chaperones, respectively. However, the mechanistic basis of their evolutionary divergence remains unclear.

View Article and Find Full Text PDF

Sm-ring assembly is important for the biogenesis, stability, and function of uridine-rich small nuclear RNAs (U snRNAs) involved in pre-mRNA splicing and histone pre-mRNA processing. Sm-ring assembly is cytoplasmic and dependent upon the Sm-site sequence and structural motif, ATP, and (SMN) protein complex. While RNAs other than U snRNAs were previously shown to associate with Sm proteins, whether this association follows Sm-ring assembly requirements is unknown.

View Article and Find Full Text PDF

Structural basis of U12-type intron engagement by the fully assembled human minor spliceosome.

Science

March 2024

Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China.

Article Synopsis
  • - The minor spliceosome is crucial for splicing U12-type introns and comprises five unique small nuclear RNAs (snRNAs), only one of which is shared with the major spliceosome.
  • - Researchers used cryo-electron microscopy to create a detailed structure of the human minor spliceosome pre-B complex, including essential components like U11, U12 snRNP, and the U4atac/U6atac.U5 tri-snRNP.
  • - The study reveals specific interactions between U11 snRNA and proteins, as well as unique characteristics that differentiate the minor tri-snRNP from the major tri-snRNPs during spliceosome assembly.
View Article and Find Full Text PDF