Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objectives: We evaluated the value of dual-energy computed tomography (DECT) parameters derived from pancreatic ductal adenocarcinoma (PDAC) to discriminate between high- and low-grade tumors and predict overall survival (OS) in patients.
Methods: Data were retrospectively collected from 169 consecutive patients with pathologically confirmed PDAC who underwent third-generation dual-source DECT enhanced dual-phase scanning before surgery between January 2017 and March 2023. Patients with prior treatments, other malignancies, small tumors, or poor-quality scans were excluded. Two radiologists evaluated three clinical and seven radiological features and measured sixteen DECT-derived parameters. Univariate and multivariate analyses were applied to select independent predictors. A prediction model and a corresponding nomogram were developed, and the area under the curve (AUC), calibration, and clinical applicability were assessed. The correlations between factors and OS were evaluated using Kaplan-Meier survival and Cox regression analyses.
Results: One hundred sixty-nine patients were randomly divided into training (n = 118) and validation (n = 51) cohorts, among which 43 (36.4%) and 19 (37.3%) had high-grade PDAC confirmed by pathology, respectively. The vascular invasion, normalized iodine concentration in the venous phase, and effective atomic number in the venous phase were independent predictors for histological grading. A nomogram was constructed to predict the risk of high-grade tumors in PDAC, with AUCs of 0.887 and 0.844 in the training and validation cohorts, respectively. The nomogram exhibited good calibration and was more beneficial than a single parameter in both cohorts. Pathological- and nomoscore-predicted high-grade PDACs were associated with poor OS (all p < 0.05).
Conclusions: The nomogram, which combines DECT parameters and radiological features, can predict the histological grade and OS in patients with PDAC before surgery.
Key Points: Question Preoperative determination of histological grade in PDAC is crucial for guiding treatment, yet current methods are invasive and limited. Findings A DECT-based nomogram combining vascular invasion, normalized iodine concentration, and effective atomic number accurately predicts histological grade and OS in PDAC patients. Clinical relevance The DECT-based nomogram is a reliable, non-invasive tool for predicting histological grade and OS in PDAC. It provides essential information to guide personalized treatment strategies, potentially improving patient management and outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-024-11109-4 | DOI Listing |