A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dual-energy computed tomography for predicting histological grading and survival in patients with pancreatic ductal adenocarcinoma. | LitMetric

Dual-energy computed tomography for predicting histological grading and survival in patients with pancreatic ductal adenocarcinoma.

Eur Radiol

Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: We evaluated the value of dual-energy computed tomography (DECT) parameters derived from pancreatic ductal adenocarcinoma (PDAC) to discriminate between high- and low-grade tumors and predict overall survival (OS) in patients.

Methods: Data were retrospectively collected from 169 consecutive patients with pathologically confirmed PDAC who underwent third-generation dual-source DECT enhanced dual-phase scanning before surgery between January 2017 and March 2023. Patients with prior treatments, other malignancies, small tumors, or poor-quality scans were excluded. Two radiologists evaluated three clinical and seven radiological features and measured sixteen DECT-derived parameters. Univariate and multivariate analyses were applied to select independent predictors. A prediction model and a corresponding nomogram were developed, and the area under the curve (AUC), calibration, and clinical applicability were assessed. The correlations between factors and OS were evaluated using Kaplan-Meier survival and Cox regression analyses.

Results: One hundred sixty-nine patients were randomly divided into training (n = 118) and validation (n = 51) cohorts, among which 43 (36.4%) and 19 (37.3%) had high-grade PDAC confirmed by pathology, respectively. The vascular invasion, normalized iodine concentration in the venous phase, and effective atomic number in the venous phase were independent predictors for histological grading. A nomogram was constructed to predict the risk of high-grade tumors in PDAC, with AUCs of 0.887 and 0.844 in the training and validation cohorts, respectively. The nomogram exhibited good calibration and was more beneficial than a single parameter in both cohorts. Pathological- and nomoscore-predicted high-grade PDACs were associated with poor OS (all p < 0.05).

Conclusions: The nomogram, which combines DECT parameters and radiological features, can predict the histological grade and OS in patients with PDAC before surgery.

Key Points: Question Preoperative determination of histological grade in PDAC is crucial for guiding treatment, yet current methods are invasive and limited. Findings A DECT-based nomogram combining vascular invasion, normalized iodine concentration, and effective atomic number accurately predicts histological grade and OS in PDAC patients. Clinical relevance The DECT-based nomogram is a reliable, non-invasive tool for predicting histological grade and OS in PDAC. It provides essential information to guide personalized treatment strategies, potentially improving patient management and outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-024-11109-4DOI Listing

Publication Analysis

Top Keywords

dual-energy computed
8
computed tomography
8
histological grading
8
pancreatic ductal
8
ductal adenocarcinoma
8
independent predictors
8
venous phase
8
tomography predicting
4
predicting histological
4
grading survival
4

Similar Publications