98%
921
2 minutes
20
Purpose: To evaluate the impact of video sequences (cine-loops) on the interobserver agreement (IOA) using risk stratification systems (RSSs) for thyroid nodules (TNs).
Methods: Twenty TNs were randomly selected from a large database and evaluated by twelve experienced observers using five different RSSs (Kwak-, ACR-, EU-, Korean-TIRADS, ATA Guidelines). In the first step, the evaluation was conducted based on static ultrasound (US) images in two planes ("static"). Six months later, these cases were reevaluated by the same observers using video sequences in two planes ("cine-loops"). Fleiss' kappa (κ) was calculated for the IOA analyses.
Results: IOA on static was moderate with κ values of 0.46, 0.42, 0.40, 0.45, and 0.38 for the Kwak-, ACR-, EU-, Korean-TIRADS, and ATA Guidelines, respectively, while the IOA on cine-loops was fair with κ values of 0.41, 0.38, 0.37, 0.36, and 0.34 for the Kwak-, ACR-, EU-, Korean-TIRADS, and ATA Guidelines, respectively. The overall IOA was superior in static images versus cine-loops ( = 0.024). Among other findings, the subgroup analyses (related to age, gender, US certificates, number of thyroid US per week, and RSSs experience) particularly showed that the experience of the observers in using RSSs had a significant influence on the IOA.
Conclusions: The overall IOA (all twelve observers and all five RSSs) was superior on static US images in comparison to cine-loops. Furthermore, the overall IOA of the five US features revealed superior κ values of the static images over cine-loops. However, this impact was significantly lower when the observers were highly experienced in the use of US RSSs of TNs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475346 | PMC |
http://dx.doi.org/10.3390/diagnostics14192138 | DOI Listing |
Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2025
Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.
View Article and Find Full Text PDFMol Pharm
September 2025
Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
Myocardial fibrosis, a key pathological feature of hypertensive heart disease (HHD), remains diagnostically challenging due to limited clinical tools. In this study, a FAPI-targeted uptake mechanism previously reported by our group, originally developed for tumor imaging, is extended to the detection of myocardial fibrosis in HHD using [F]F-NOTA-FAPI-MB. The diagnostic performance of this tracer is compared with those of [F]F-FDG, [F]F-FAPI-42, and [F]F-NOTA-FAP2286, and its potential for fluorescence imaging is also evaluated.
View Article and Find Full Text PDFTop Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFMagn Reson Chem
September 2025
Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.
View Article and Find Full Text PDF