Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential cure for myelodysplastic neoplasms (MDSs) and other hematologic malignancies. This study investigates post-transplantation genetic evolution and telomere dynamics in hematopoietic cells, with a focus on clonal hematopoiesis (CH). We conducted a longitudinal analysis of 21 MDS patients who underwent allo-HSCT between September 2009 and February 2015. Genetic profiles of hematopoietic cells from both recipients and donors were compared at equivalent pre- and post-transplantation time points. Targeted sequencing identified CH-associated mutations, and real-time quantitative PCR measured telomere length. Furthermore, we compared CH incidence between recipients and age-matched controls from the GENIE cohort from routine health checkups. Post-allo-HSCT, 38% of recipients developed somatic mutations not detected before transplantation, indicating de novo CH originating from donor cells. Compared to age-matched healthy controls, recipients showed a significantly higher incidence of CH, suggesting increased susceptibility to genetic changes post-transplant. Telomere length analysis also revealed accelerated shortening in transplanted cells, highlighting the heightened stress and proliferation demands in the new microenvironment. Our findings reveal a notable incidence of donor-derived CH in allo-HSCT recipients, alongside significant telomere attrition. This suggests the potential influence of the marrow microenvironment on genetic and molecular changes in hematopoietic cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477089 | PMC |
http://dx.doi.org/10.3390/ijms251910258 | DOI Listing |