An insight into allele-selective approaches to lowering mutant huntingtin protein for Huntington's disease treatment.

Biomed Pharmacother

Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liao

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Huntington's disease (HD), a monogenic neurodegenerative disorder, stems from a CAG repeat expansion within the mutant huntingtin gene (HTT). This leads to a detrimental gain-of-function of the mutated huntingtin protein (mHTT). As of now, there exist no efficacious therapies to alter the disease progression. In view of the monogenetic mutation nature and an indispensable role of wild-type HTT in healthy neurodevelopment and cellular functions, the developing strategy of allele-selectively deleting/silencing mutant HTT as well as only inactivating mHTT without altering wild-type HTT or wild-type huntingtin protein (wtHTT) comes highly recommended, and may offer a promising treatment option for HD. Here, we reviewed the therapeutic approaches that allele-selective lowering mHTT expression by targeting only mutant HTT DNA, RNA and mHTT along with recent preclinical and clinical outcomes and challenges, in anticipation of some novel ideas to be introduced into HD therapeutic research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117557DOI Listing

Publication Analysis

Top Keywords

huntingtin protein
12
mutant huntingtin
8
huntington's disease
8
wild-type htt
8
mutant htt
8
htt
5
insight allele-selective
4
allele-selective approaches
4
approaches lowering
4
mutant
4

Similar Publications

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and psychiatric disturbances. It is caused by CAG repeat expansions in the HTT gene, resulting in the formation of mutant huntingtin protein that aggregates and disrupts neuronal function. This review outlines the pathogenesis of HD, including genetic, molecular, and environmental factors.

View Article and Find Full Text PDF

Voltage-dependent anion channel 1 is an integral outer membrane protein of the mitochondria that governs apoptosis, enables metabolite exchange, and influences mitochondrial activity. In neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and Alzheimer's disease, oxidative stress, neuroinflammation, and mitochondrial dysfunction are frequent features. Voltage-dependent anion channel 1 is a key regulator of these processes.

View Article and Find Full Text PDF

Unlabelled: The autophagy-lysosomal pathway is crucial for maintaining homeostasis and survival of neurons, hence defects in this system have been associated with neurodegeneration, including Parkinson's disease (PD). The cysteine proteases cathepsin B (CTSB) and cathepsin L (CTSL) are involved in the clearance of various neurodegenerative disease-related proteins such as amyloid-[Formula: see text], huntingtin and the prion protein. While there are studies implicating CTSB and CTSL as mediators of α-synuclein/SNCA clearance, their exact roles remain unclear.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) maintains brain homeostasis through specialized functions including tight junction formation and selective transport of brain endothelial cells (ECs). While ECs are generally thought to rely primarily on glycolysis for energy production, the transcriptional mechanisms underlying their metabolic specialization in the brain endothelium remain poorly understood, especially considering the brain's extraordinary energy demands. Through comparative transcriptomic analysis, it is demonstrated that brain endothelial cells are enriched for mitochondrial function genes, with forkhead box protein 1 (FOXQ1) being selectively expressed in cerebral vasculature.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by progressive motor dysfunction, psychiatric disturbances, and cognitive decline. The pathophysiology of HD centers on a polyglutamine expansion in the huntingtin protein, which triggers widespread transcriptional dysregulation, impaired proteostasis, mitochondrial dysfunction, and excitotoxic neuronal loss-most prominently within the striatum and cortex. Despite decades of research, disease-modifying therapies remain elusive.

View Article and Find Full Text PDF