Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The inflow and infiltration (I&I) is an issue for many urban sewer networks (USNs), which can significantly affect system functioning. Placing sensors within the USNs is a typical approach to detect large I&I event, but deploying a limited number of sensors while achieving maximum detection reliability is challenging. While some methods are available for sensor placement, they are generally heuristic search-based methods (HSBMs) and hence the resultant sensor placement strategies (SPSs) are variable over different algorithm runs or parameterizations. This paper develops a new deterministic two-stage clustering method for SPS optimization based on information entropy. Within the first stage, the Spectral Clustering method is applied to assign USN nodes to different clusters according to their joint entropy. In the second stage, the topology structure property is considered to enable further clustering for improving detection reliability. Average I&I detection reliability is used to select clusters and the optimal SPS is identified by maximizing joint entropy of all possible solutions where a single sensor is assigned to each selected cluster. The proposed method and two existing HSBMs are applied to a real USN and their performance is compared. The results obtained show that: (i) a strong correlation coefficient R (R > 0.95) is observed between joint entropy and SPS's detection reliability, which has not been revealed before, (ii) the proposed method consistently outperforms the other two approaches in efficiently offering SPSs with about 7-15 % higher detection reliability, and (iii) the proposed method provides the optimal SPS in a deterministic manner, which makes it attractive for engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122591DOI Listing

Publication Analysis

Top Keywords

detection reliability
20
sensor placement
12
joint entropy
12
proposed method
12
inflow infiltration
8
urban sewer
8
sewer networks
8
clustering method
8
optimal sps
8
detection
6

Similar Publications

Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that induces reproductive disorders in sows and respiratory diseases in growing pigs. Recently, the NADC34-like strain of PRRSV has become more prevalent, with outbreaks occurring across pig farms in China. However, a reliable diagnostic method for the clinical detection of this strain has been absent.

View Article and Find Full Text PDF

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF

Flexible photonic contactless human-machine interface based on visible-blind near-infrared organic photodetectors.

Natl Sci Rev

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.

Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.

View Article and Find Full Text PDF

Introduction: Organizational resilience is of paramount importance for coping with adversity, particularly in the healthcare sector during crises. The objective of the present study was to evaluate the impact of resilience-based interventions on the well-being of healthcare employees during the pandemic. In this study, resilience-based interventions are defined as organizational actions that strengthen a healthcare institution's capacity to cope with crises-such as ensuring adequate personal protective equipment and staff testing, clear risk-communication, alternative care pathways (e.

View Article and Find Full Text PDF