98%
921
2 minutes
20
This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices. Spectroscopic measurements provide insights into the intricate relationship between the structure and electronic properties of a-Si, enhancing our understanding of how specific configurations, such as the choice of substrate, can markedly influence detector performance. In this study, we compare the performance of a-Si detectors deposited on two different substrates: crystalline silicon (c-Si) and flexible Kapton. Our findings suggest that detectors deposited on Kapton exhibit reduced sensitivity, despite having comparable noise and leakage current levels to those on crystalline silicon. We hypothesize that this discrepancy may be attributed to the substrate material, differences in film morphology, and/or the alignment of energy levels. Further measurements are planned to substantiate these hypotheses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477895 | PMC |
http://dx.doi.org/10.3390/nano14191551 | DOI Listing |
J Neural Eng
September 2025
Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.
Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.
View Article and Find Full Text PDFNanotechnology
September 2025
State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No 135, XinGangXi Road, Guangzhou 510275, guangzhou, 510275, CHINA.
Silicon carbide nanowires (SiC NWs) combine the benefits of bulk SiC materials with the properties of low-dimensional nanomaterials. They are known for their excellent mechanical strength and durability, which are critical for their potential applications in high-stress environments and micro-nano functional systems. Here, the mechanical properties and deformation mechanisms of 2H-SiC NWs with rare defects in the [0001] orientation are reported.
View Article and Find Full Text PDFSmall Methods
September 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Monolithic perovskite/silicon tandem (PST) solar cells are rapidly emerging as next-generation solar cells with significant potential for commercialization. This study presents a proof of concept for a silicon diffused junction-based PST cell, utilizing a passivated emitter rear contact (PERC) cell with a low-temperature (<200 °C) laser-fired contact process to minimize thermal damage. By introducing amorphous silicon to the emitter surface of PERC bottom cell, the open circuit voltage (V) improve from 0.
View Article and Find Full Text PDFJ Mater Chem A Mater
August 2025
Institute for Theoretical Physics, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
The quest for high-capacity anode materials is vital in developing future lithium-ion battery technologies. While silicon-based anodes offer high theoretical capacity, their commercial realization is hindered by instability associated with large volume changes. Amorphous silicon nitride (a-SiN) has emerged as a promising alternative, acting as a conversion-type anode where lithium incorporation drives the formation of a structurally robust matrix and active phases.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2025
Civil Engineering Department, Federal Rural University of Pernambuco, Recife, Pernambuco, 50740-530, Brazil.
In recent years, the use of supplementary cementitious materials (SCMs) in building materials has increased due to concerns about CO emissions from the cement industry. On the other hand, the scarcity of traditional sources of SCMs in certain regions exacerbates the issue of high demand for these materials in concrete production. In this context, this article explores the chemical, mineralogical, morphological, and physical properties and pozzolanic activity of two types of diatomaceous earth (DE) obtained from industrial waste and by-products.
View Article and Find Full Text PDF