Uncovering conserved networks and global conformational changes in G protein-coupled receptor kinases.

Comput Struct Biotechnol J

Department of Brain Sciences, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

G protein-coupled receptor kinases (GRKs) are essential regulators of signaling pathways mediated by G protein-coupled receptors. Recent research suggests that GRK-mediated phosphorylation patterns dictate functional selectivity, leading to biased cellular responses. However, a comprehensive understanding of the structural mechanisms at the single-residue level remains elusive. This study aims to define the general conformational dynamics of GRKs with a particular focus on quantifying the transitions between the closed and open states. Specifically, we examined these transitions, classified based on the ionic lock between the regulatory G protein signaling homology domain and kinase domain. To facilitate a precise structural comparison, we assigned common labels to topologically identical positions across the 47 GRK structures retrieved from the Protein Data Bank. Our analysis identified both general and subfamily-specific dynamic movements within the networks and measured the conformational change scores between the two states. Elucidating these structural dynamics could provide significant insights into the regulatory mechanisms of GRK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472376PMC
http://dx.doi.org/10.1016/j.csbj.2024.09.014DOI Listing

Publication Analysis

Top Keywords

protein-coupled receptor
8
receptor kinases
8
uncovering conserved
4
conserved networks
4
networks global
4
global conformational
4
conformational changes
4
changes protein-coupled
4
kinases protein-coupled
4
kinases grks
4

Similar Publications

Hypersensitivity reactions to quinolones (QHRs) have been increasing in frequency, thus classifying them as the second most frequently implicated class of antibiotics in hypersensitivity reactions (HRs). It is noteworthy that quinolones (Qs) have been observed to predominantly trigger immediate hypersensitivity reactions (IHRs). These reactions are categorized as either IgE-mediated or non-IgE-mediated, attributable to the off-target occupation of the recently described receptor, Mas-related G-protein coupled receptor member X2 (MRGPRX2), on effector cells.

View Article and Find Full Text PDF

The G-Protein-Coupled Receptor Kinase 2 Orchestrates Hair Follicle Homeostasis.

J Invest Dermatol

September 2025

Departamento de Biología Molecular, Instituto Universitario de Biología Molecular IUBM-UAM and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV

Tightly regulated cell-cell and cell-niche intercommunications via intertwined signaling networks are involved in maintaining normal hair follicle (HF) homeostasis, cycling and cell fate determination. However, knowledge of specific mechanisms by which hair loss takes place under pathological situations is needed. Using a keratinocyte-specific knockout mouse model, we uncover that the G-protein-coupled receptor kinase 2 (GRK2) signaling node plays a key role in HF homeostasis.

View Article and Find Full Text PDF

Synapse refinement through the elimination of excess synapses is crucial for proper neuronal circuitry during development and adulthood, and the phagocytic activity of astrocytes plays an important role in this process. Failure to remove excess synapses can lead to neurological and neurodevelopmental disorders like epilepsy and autism spectrum disorder (ASD). The adhesion G protein-coupled receptor BAI1/ADGRB1 contributes to phagocytosis in various tissues, including the clearance of apoptotic myoblasts in skeletal muscle and epithelial cells in the intestine.

View Article and Find Full Text PDF

Isobavachalcone ameliorates TNBS-induced Crohn's disease-like colitis via GPR84-PI3K-AKT axis.

J Ethnopharmacol

September 2025

State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Na

Ethnopharmacological Relevance: The traditional Chinese medicine Psoralea corylifolia L. (PCL) has been clinically used to treat diarrhea and gastrointestinal inflammatory disorders. G protein-coupled receptor 84 (GPR84) is emerging as a potential target for inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

The CD39-CD73-adenosine axis: Master regulator of immune evasion and therapeutic target in pancreatic ductal adenocarcinoma.

Biochim Biophys Acta Rev Cancer

September 2025

Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China; National Regional Medical Cente

Pancreatic ductal adenocarcinoma (PDAC) exhibits persistent resistance to immunotherapy, with a 5-year survival rate around 10 %. The CD39-CD73-adenosine axis emerges as a critical mediator of immune evasion in PDAC, generating pathologically elevated adenosine concentrations that systematically suppress anti-tumor immunity. This purinergic pathway operates through sequential ATP hydrolysis by CD39 and CD73 ectonucleotidases, producing adenosine that engages four G-protein-coupled receptors (A1, A2A, A2B, A3) to orchestrate comprehensive immunosuppression.

View Article and Find Full Text PDF