Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The osteoporotic bone defect caused by excessive activity of osteoclasts has posed a challenge for public healthcare. However, most existing bioinert bone cement fails to effectively regulate the pathological bone microenvironment and reconstruct bone homeostasis in the presence of osteoclast overactivity and osteoblast suppression. Herein, inspired by natural bone tissue, an in-situ modulation system for osteoporotic bone regeneration is developed by fabricating an injectable double-crosslinked PEGylated poly(glycerol sebacate) (PEGS)/calcium phosphate cement (CPC) loaded with sodium alendronate (ALN) (PEGS/CPC@ALN) adhesive bone cement. By incorporating ALN, the organic-inorganic interconnection within PEGS/CPC@ALN results in a 100 % increase in compression modulus and energy dissipation efficiency. Additionally, PEGS/CPC@ALN effectively adheres to the bone by bonding with amine and calcium ions present on the bone surface. Moreover, this in-situ regulation system comprehensively mitigates excessive bone resorption through the buffering effect of CPC to improve the acidic microenvironment of osteoporotic bone and the release of ALN to inhibit hyperactive osteoclasts, and facilitates stem cell proliferation and differentiation into osteoblasts through calcium ion release. Overall, the PEGS/CPC@ALN effectively regulates the pathological microenvironment of osteoporosis while promoting bone regeneration through synergistic effects of drugs and materials, thereby improving bone homeostasis and enabling minimally invasive treatment for osteoporotic defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471141 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2024.09.032 | DOI Listing |