Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The separation of ions of similar charge is a crucial challenge in many applications, from water treatment to precious metal recovery. Membranes with cross-linked zwitterionic amphiphilic copolymer (ZAC-X) selective layers, which feature self-assembled, zwitterion-lined nanodomains for permeation, offer unique permselectivity between monovalent anions (e.g., Cl/F). This has motivated studies on the mechanisms of transport and selectivity in this family of materials. In this study, we conducted molecular dynamics simulations of aqueous salt solutions within zwitterion-functionalized nanopores to elucidate the influence of dipole orientation of the ZI ligands on anion diffusivities, partitioning, and permeabilities. Our model compares systems with contrasting ZI organization: surface-cation-anion (S-ZI-ZI, Motif A) and surface-anion-cation (S-ZI-ZI, Motif B). Our results reveal that Motif A exhibits less pronounced ion pairing due to a spatial separation in the radial profiles of cations and anions. Motif B demonstrates prominent ion pairing for smaller anions owing to their overlap with cation distributions. Further, our potential of mean force profiles reveals that anion partitioning increases with anion size in both ligand motifs, whereas Motif B exhibits significantly higher partitioning selectivity toward larger anions compared to Motif A. Our results for ion diffusivities show that the self-diffusivities of both anions and cations are lower for Motif B compared to Motif A. Such trends in anion partitioning and diffusivities can be explained by differences in the interactions and steric hindrance experienced by the anionic species in Motifs A and B. Finally, our results for anion permselectivity, obtained by combining partitioning and diffusivity, indicate that partitioning trends dominate over diffusivity trends. Consequently, anion permeability increases with anion size, and ligand Motif B yields much higher permselectivity toward larger anions compared to ligand Motif A.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c13034DOI Listing

Publication Analysis

Top Keywords

motif
10
anion
8
s-zi-zi motif
8
motif exhibits
8
ion pairing
8
anion partitioning
8
increases anion
8
anion size
8
size ligand
8
larger anions
8

Similar Publications

Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Distribution and Relative Size of Protein Binding Domains Cooperatively Influence Phase Separation of Protein-RNA Mixtures.

J Phys Chem B

September 2025

Hefei National Research Center for Physical Sciences at the Microscale and Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Multivalent protein-protein interactions play essential roles in mediating liquid-liquid phase separation (LLPS) that drives biomolecular condensate formation. Here, we systematically investigate how the spatial distribution and relative size of protein binding domains (PBDs) would influence LLPS in a mixture of spherical proteins and RNA single strands by using a patchy-particle polymer model, wherein each protein contains a fixed number of PBDs on the surface distributed closely or sparsely. Intriguingly, we find that LLPS behavior exhibits a nontrivial dependence on the cooperative interplay between PBD distribution and protein size: while sparsely distributed PBDs are more favorable to LLPS for small proteins, closely packed PBDs facilitate LLPS for larger counterparts.

View Article and Find Full Text PDF

Apicomplexan AP2 (ApiAP2) family proteins are a family of transcription factors that are known to regulate gene expression in apicomplexan pathogens, including . In this study, we focused on TgAP2X-7, a member of the APiAP2 family that is predicted to be essential for fitness. Endogenous tagging of TgAP2X-7 followed by immunofluorescence analysis revealed that it's a cell cycle-regulated nuclear protein with peak expression in the G1 phase.

View Article and Find Full Text PDF

The Atlas of the Shell Proteome in Oysters Reveals the Potential Roles of the Cytoskeleton and Extracellular Matrix in Biomineralization.

J Proteome Res

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.

View Article and Find Full Text PDF