98%
921
2 minutes
20
Formic acid (FA) has emerged as a promising candidate for hydrogen energy storage due to its favorable properties such as low toxicity, low flammability, and high volumetric hydrogen storage capacity under ambient conditions. Recent analyses have suggested that FA produced by electrochemical carbon dioxide (CO) reduction reaction (eCORR) using low-carbon electricity exhibits lower fugitive hydrogen (H) emissions and global warming potential (GWP) during the H carrier production, storage and transportation processes compared to those of other alternatives like methanol, methylcyclohexane, and ammonia. eCORR to FA can enable industrially relevant current densities without the need for high pressures, high temperatures, or auxiliary hydrogen sources. However, the widespread implementation of eCORR to FA is hindered by the requirement for highly stable and selective catalysts. Herein, the aim is to explore and evaluate the potential of catalyst engineering in designing stable and selective nanostructured catalysts that can facilitate economically viable production of FA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202404980 | DOI Listing |
Mikrochim Acta
September 2025
Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.
View Article and Find Full Text PDFBMJ Open
September 2025
Medizinische Fakultät OWL, AG Allgemein- und Familienmedizin, Universität Bielefeld, Bielefeld, Germany
Introduction: Multimorbidity contributes significantly to poor population health outcomes while straining healthcare systems. Although some multimorbid patients experience an accelerated health decline (a decline in well-being or functional status that cannot be attributed to the natural ageing-related health deterioration), others can remain stable for years. Identifying risk factors for accelerated health decline in persons with multimorbidity could help prevent complications and reduce unnecessary interventions.
View Article and Find Full Text PDFNeurosci Biobehav Rev
September 2025
Department of Experimental and Applied Psychology, Institute for Brain and Behaviour, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam. Electronic address:
Human vision deals with two major limitations. First, vision is strongly foveated and deteriorates with eccentricity. Second, visual attention selectively prioritizes some stimuli over others.
View Article and Find Full Text PDFWater Res
September 2025
College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China. Electronic address:
Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is emerging as a significant contributor to environmental DOM pools. However, the molecular-scale processes governing its interactions with mineral and their effects on photoreactivity remain poorly understood. This study elucidates the structure-dependent molecular transformations and photochemical reactivity of DOM during its interaction with goethite, revealing distinct mechanisms driving reactive oxygen species (ROS) dynamics.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:
Moisture-driven energy generators (MEGs) represent a renewable energy technology, yet challenges such as environmental humidity dependence and transient power generation behavior hinder their practical applications. Herein, a high-performance bilayer MEG is developed by integrating MXene-impregnated paper with a polyacrylamide (PAM) hydrogel to realize environmental tolerance and sustained power generation. Electronegative MXene and paper with 3D porous structure synergistically facilitate selective transport of positive charge, while the hydrogel serves as a water reservoir to provide a moist environment and migratory ions.
View Article and Find Full Text PDF