Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate estimates of methylmercury (MeHg) exposure are valuable to actionably assess risk and protect wildlife and human health. MeHg trophic transfer is a critical driver of risk: MeHg is generally biomagnified by a factor of 8.3 ± 7.5 from one trophic level to the next, averaged across freshwater communities (mean ± standard deviation). This variability can produce disparate risks even where basal MeHg concentrations are similar. Taxonomy may be one driver of this variability: physiologically diverse groups, like vertebrates and invertebrates, may assimilate MeHg differently. To determine whether taxonomy affects trophic transfer efficiency, we conducted a meta-analysis characterizing predatory invertebrate MeHg biomagnification. Our analyses estimated that freshwater predatory invertebrates biomagnify MeHg by factors of 2.1 ± 0.2 to 4.3 ± 0.3, with a 98.9 ± 0.4% posterior probability that factors are below 5 (mean ± standard error). When vertebrates or primary producers were included, a site's trophic magnification factor was 18.6 ± 6.2 to 54.1 ± 7.7% higher than estimates for invertebrates alone. Biomagnification was inversely correlated to prey MeHg concentration and varied among systematic and functional groups. These data suggest that predatory invertebrates biomagnify MeHg less efficiently than vertebrates and that a community's diversity and structure determine its biomagnification efficiency. Incorporating organismal variation in trophic transfer estimates may improve the assessment, communication, and management of MeHg risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526377PMC
http://dx.doi.org/10.1021/acs.est.4c05920DOI Listing

Publication Analysis

Top Keywords

predatory invertebrates
12
trophic transfer
12
mehg
10
freshwater predatory
8
invertebrates biomagnify
8
biomagnify mehg
8
invertebrates
5
trophic
5
meta-analysis mercury
4
biomagnification
4

Similar Publications

The phytoseiid mite, Neoseiulus longispinosus (Evans) is considered as one of the effective biological control agents against the tetranychid mites in the Indian subcontinent. This predator can be effectively utilized to manage the two-spotted spider mite, Tetranychus urticae Koch under protected conditions. Carnation holds a significantly important position as cut flower crop in India as well as throughout the world.

View Article and Find Full Text PDF

This study evaluated the significance of ten different pollen types-maize, Spanish broom, cattail, marshmallow, malva, sunflower, khejri, pomegranate, ice flower, and bee pollen-in influencing the development, reproduction, and population growth of E. scutalis. The aim was to enhance our understanding of the pollen spectrum acceptable to this predatory mite.

View Article and Find Full Text PDF

The tomato russet mite, Aculops lycopersici (Tryon), is a key pest of commercially grown tomatoes worldwide. Due to its minute size, its detection is often not timely for effective control. In this study, the approach of limiting A.

View Article and Find Full Text PDF

Biotic interactions-and predation in particular-are thought to follow a latitudinal gradient, increasing towards the tropics; yet empirical evidence remains contradictory and largely based on studies from the Northern Hemisphere. Moreover, the role of environmental variables shaping latitudinal gradients of predation intensity has seldom been tested. Here, we quantify predation by shell-breaking crabs on modern shells of the marine gastropod along a latitudinal gradient (40°-54° S) on the southwestern Atlantic coast.

View Article and Find Full Text PDF

Animals can improve their decision-making abilities by integrating information from multiple senses, which is especially beneficial when living in fluctuating environments. However, understanding how wild predators may use multimodal sensing when hunting prey in split-second interactions remains largely unexplored. As nocturnal hunters, bats rely on echolocation to navigate and to locate evasive prey, yet they have retained functional vision, despite the associated costs.

View Article and Find Full Text PDF