98%
921
2 minutes
20
The study of biological soft tissue structures at the micron scale details the function of healthy and pathological tissues, which is vital in the diagnosis and treatment of diseases. Speckle based X-ray phase contrast tomographic scans at a nanometer scale have the potential to thoroughly analyse such tissues in a quantitative and qualitative manner. Diamond light source, the UKs national synchrotron facility developed and refined a 1-D X-ray speckle-based imaging technique, referred to as Fly scan mode. This novel image acquisition technique was used to perform a rapid structural composition scan of rodent lung histology samples. The rodent samples were taken from healthy and Staphylococcus aureus induced acute respiratory distress syndrome models. The analysis and cross comparison of the fly scan method, absorption-based tomography and conventional histopathology H&E staining microscopy are discussed in this paper. This analysis and cross comparison outline the ways the speckle-based technique can be of benefit. These advantages include improved soft tissue contrast, 3-D volumetric rendering, segmentation of specific gross tissue structures, quantitative analysis of gross tissue volume. A further advantage is the analysis of cellular distribution throughout the volumetric rendering of the tissue sample. The study also details the current limitations of this technique and points to ways in which future work on this imaging modality may progress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467383 | PMC |
http://dx.doi.org/10.1038/s41598-024-72660-0 | DOI Listing |
Significance: Stroke is a leading cause of disability worldwide, necessitating rapid and accurate diagnosis to limit irreversible brain damage. However, many advanced imaging modalities (computerized tomography, magnetic resonance imaging) remain inaccessible in remote or resource-constrained settings due to high costs and logistical barriers.
Aim: We aim to evaluate the feasibility of a laser speckle-based technique, coupled with deep learning, for detecting simulated stroke conditions in a tissue phantom.
Sensors (Basel)
April 2025
Department of Optics, Faculty of Physics, Complutense University of Madrid, Pl. de las Ciencias 1, 28040 Madrid, Spain.
Multimodal imaging is valuable because it can provide additional information beyond that obtained from a conventional bright-field (BF) image and can be implemented with a widely available device. In this paper, we investigate the implementation of speckle-based transmission (T) and dark-field (DF) imaging in a laboratory X-ray setup to confirm its usefulness for material analysis. Three methods for recovering T and DF images were applied to a sample composed of six materials: plastic, nylon, cardboard, cork, expanded polystyrene and foam with different absorption and scattering properties.
View Article and Find Full Text PDFA key contribution to X-ray dark-field (XDF) contrast is the diffusion of X-rays by sample structures smaller than the imaging system's spatial resolution; this is related to position-dependent small-angle X-ray scattering. However, some experimental XDF techniques have reported that XDF contrast is also generated by resolvable sample edges. Speckle-based X-ray imaging (SBXI) extracts the XDF by analyzing sample-imposed changes to a reference speckle pattern's visibility.
View Article and Find Full Text PDFSpeckle-based X-ray imaging (SBI) is a phase-contrast method developed at and for highly coherent X-ray sources, such as synchrotrons, to increase the contrast of weakly absorbing objects. Consequently, it complements the conventional attenuation-based X-ray imaging. Meanwhile, attempts to establish SBI at less coherent laboratory sources have been performed, ranging from liquid metal-jet X-ray sources to microfocus X-ray tubes.
View Article and Find Full Text PDFSci Rep
October 2024
School of Natural Sciences, Physics, University of Galway, Galway, Ireland.