98%
921
2 minutes
20
Lethal Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS) caused by Dengue virus (DENV) infection necessitate the development of effective treatments. Peptides derived from the N-terminal amphipathic α-helix of hepatitis C virus (HCV) NS5A exhibit antiviral activity by disrupting liposomes with high curvatures, such as virus envelopes. This study engineered five peptides from HCV genotype 3a NS5A N-terminal α-helix and screened them for neutralizing efficacy against three DENV serotypes. Two peptides, 3a 3/20 and DS-05, showed superior therapeutic efficacy against DENV and were further evaluated in treating DHF/DSS induced by mouse-adapted DENV infection. Administration of 3a 3/20 and DS-05 post-infection significantly improved mortality and weight loss associated with DHF/DSS in AG6 mice. These peptides reduced viral load in internal organs and viremia to levels comparable with the positive control drug, JNJ-A07, a DENV NS3-NS4B inhibitor. Additionally, they attenuated the cytokine storm in the blood and expression of inflammatory cytokines in internal organ tissues, ameliorating liver and kidney dysfunction after DENV infection. Histopathological analysis revealed significant suppression of damages in internal organs. These findings suggest that the 3a 3/20 and DS-05 peptides improve clinical symptoms of DHF/DSS induced by DENV infection, indicating their potential for clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2024.106018 | DOI Listing |
Biophys J
September 2025
Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Department of Microbiology, Immunology
The dengue virus (DENV) poses a significant threat to human health, accounting for approximately 400 million infections each year. Its genome features a circular structure that facilitates replication through long-range RNA-RNA interactions, utilizing cyclization sequences located in the untranslated regions (UTRs). To gain new insights into the organization of the DENV genome, we purified the 5' and 3' UTRs of DENV in vitro and examined their structural and binding properties using various biophysical techniques combined with computational methods.
View Article and Find Full Text PDFJ Travel Med
September 2025
Public Health Agency of Sweden, Solna, Sweden.
We describe a Qdenga-induced DENV-2-infection in a Swedish traveler. Comparative sequencing suggests that the vaccine contained a small fraction of identical virus as detected in the patient, suggesting a selection of a DENV-2-substrain with unusual amino acid substitutions. Further research on selection of, and possible effects of, Qdenga-substrain-infections is warranted.
View Article and Find Full Text PDFMSMR
August 2025
Australian Defense Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, Queensland.
Arboviruses pose a significant health threat to U.S. military personnel deployed in the U.
View Article and Find Full Text PDFJ Infect
September 2025
Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard H
Background: To investigate the genetic diversity, evolutionary dynamics, and phylogeography of DENV strains circulating in Saudi Arabia.
Methods: We conducted serotyping, whole-genome sequencing, and phylogeographic analyses of DENV strains collected across Saudi Arabia between 2021 and 2023. A total of 20 full genomes were successfully obtained: DENV-1 (n = 2), DENV-2 (n = 10), and DENV-3 (n = 8).
J Infect Public Health
August 2025
Center for Tropical Medicine and Infectious Disease Research , Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung
Background: Taiwan experienced a major dengue outbreak in 2023 following the relaxation of COVID-19 border controls. The contributing factors remained unclear. This study investigated potential virological, immunological, and clinical drivers.
View Article and Find Full Text PDF