98%
921
2 minutes
20
Monolayer transition metal dichalcogenides (TMDs) have emerged as promising materials to generate single-photon emitters (SPEs). While there are several previous reports in the literature about TMD-based SPEs, the precise nature of the excitonic states involved in them is still under debate. Here, we use magneto-optical techniques under in-plane and out-of-plane magnetic fields to investigate the nature of SPEs in WSe monolayers on glass substrates under different strain profiles. Our results reveal important changes on the exciton localization and, consequently, on the optical properties of SPEs. Remarkably, we observe an anomalous PL energy redshift with no significant changes of photoluminescence (PL) intensity under an in-plane magnetic field. We present a model to explain this redshift based on intervalley defect excitons under a parallel magnetic field. Overall, our results offer important insights into the nature of SPEs in TMDs, which are valuable for future applications in quantum technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503778 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.4c03686 | DOI Listing |
ACS Nano
September 2025
School of Physics and Key Lab of Quantum Materials and Devices of the Ministry of Education, Southeast University, Nanjing 211189, P. R. China.
While hexagonal boron nitride (hBN) hosts promising room-temperature quantum emitters for hybrid quantum photonic circuits, scalable deterministic integration and insufficient brightness alongside low photon collection and coupling efficiencies remain unresolved challenges. We present a femtosecond laser nanoengineering platform that enables the site-specific generation of hBN single-photon source (SPS) arrays. First-principles density functional theory (DFT) calculations and polarization-resolved spectroscopy confirm the atomic origin of emission as interfacial defects at hBN/SiO heterojunctions.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt.
In close proximity to quantum emitters (QEs), plasmonic nanoparticles (NPs) facilitate energy exchange with the QEs, which is known as plasmon-exciton coupling. The strong coupling regime, associated with Rabi splitting, is crucial for advanced nanophotonic devices, including solar cells, single-photon nonlinear optics, and nanolasers. Recently, high refractive index semiconductor NPs (typically Si NPs) have emerged for designing strongly coupled systems.
View Article and Find Full Text PDFNano Lett
September 2025
Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland.
Beyond single-photon emission, generating correlated -photon bundles, e.g., a photon pair, is essential for various quantum technologies including quantum teleportation and metrology.
View Article and Find Full Text PDFNat Nanotechnol
August 2025
Department of Physics, CUNY - The City College of New York, New York, NY, USA.
As the ability to integrate single-photon emitters into photonic architectures improves, so does the need to characterize and understand their interaction. Here we use a scanning diamond nanocrystal to investigate the interplay between the emission of room-temperature nitrogen-vacancy (NV) centres and a proximal topological waveguide. In our experiments, NVs serve as local, spectrally broad light sources, which we exploit to characterize the waveguide bandwidth as well as the correspondence between the light injection site and the directionality of wave propagation.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Physics, University of Hull Cottingham Road HU6 7RX UK
Hybrid dielectric-metal nanogaps offer unique properties such as enhanced local density of optical states (LDOS) and simultaneously high quantum yield and coupling efficiency, with applications in bright single-photon sources, efficient nanoLEDs and imaging spectroscopy. In this work we report on silicon-gold hybrid nanogaps, considering both silicon nanorods on a gold film and gold nanorods on a silicon surface and compare them to their purely metallic and dielectric equivalent. To obtain the necessary nanometer-scale control, a combination of colloidal lithography, metal assisted chemical etching (MACE), and layer-by-layer polyelectrolyte approach were used to construct the nanogaps.
View Article and Find Full Text PDF