Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The establishment of organotypic preclinical models that accurately resemble the native tumor microenvironment at an anatomic human scale is highly desirable to level up platforms potential for screening candidate therapies. The bioengineering of anatomic-scaled three-dimensional (3D) models that emulate native tumor scale while recapitulating their cellular and matrix components remains, however, to be fully realized. In this focus, herein, we leveraged embedded 3D bioprinting for biofabricating pancreatic ductal adenocarcinoma (PDAC) models combining gelatin-methacryloyl and hyaluronic acid methacrylate extracellular matrix (ECM)-mimetic biomaterials with human pancreatic cancer cells and cancer-associated fibroblasts to generate models capable of emulating native tumor size (∼6 mm) and stromal elements. By using a viscoelastic continuous polymeric supporting bath, tumor-scale 3D models were rapidly generated (∼50 constructs/h) and easily recovered following in-bath visible light photocrosslinking. As a proof-of-concept, tissue-scale constructs displaying physiomimetic designs were biofabricated. These models also encompass the incorporation of a stromal compartment to better emulate the cellular components of the PDAC native tumor microenvironment (TME) and its stratified spatial organization. Cell-laden tumor-size constructs remained viable for up to 14 days and were responsive to Gemcitabine in a dose-dependent mode. Cancer-stroma models also exhibited increased drug resistance compared to their monotypic counterparts, highlighting the key role of stromal cells in chemotherapeutic resistance. Overall, we report for the first time the freeform biofabrication of PDAC models exhibiting anatomic scale, different structural complexities, and engineered cancer-stromal compartments, being highly valuable for preclinical screening of therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c11188DOI Listing

Publication Analysis

Top Keywords

native tumor
16
models
9
embedded bioprinting
8
cancer-stroma models
8
tumor microenvironment
8
pdac models
8
bioprinting tumor-scale
4
tumor-scale pancreatic
4
pancreatic cancer-stroma
4
models preclinical
4

Similar Publications

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

Hyaluronic acid promotes biomineralization of osteoblast-like cells - observations on two different barrier membranes.

Int J Implant Dent

September 2025

Department of Periodontology, Center for Biomedical Education and Research (ZBAF), School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany.

Background: Guided bone regeneration (GBR) relies on biocompatible membranes to support osteogenesis. 1,4-butanediol diglycidyl ether (BDDE)-crosslinked hyaluronic acid (xHyA) has shown promise in enhancing bone regeneration, yet its mechanisms remain unclear.

Objective: This study evaluates the osteogenic effects of xHyA-functionalized native pericardium collagen membrane (NPCM) and ribose-crosslinked collagen membrane (RCCM) using an airlift culture model with SaOS-2 cells.

View Article and Find Full Text PDF

The integration of robotic platforms in breast oncology has witnessed substantial expansion, fueled by their inherent advantages in minimally invasive access and enhanced intraoperative maneuverability. Most of the robotic-assisted breast surgery has been performed using multi-arm robots. However, the implementation of single-port robotic (SPr) systems in mammary interventions continues to undergo rigorous clinical evaluation, particularly regarding long-term oncological safety and cost-effectiveness metrics.

View Article and Find Full Text PDF

We present multimodal confocal Raman micro-spectroscopy (RS) and tomographic phase microscopy (TPM) for quick morpho-chemical phenotyping of human breast cancer cells (MDA-MB-231). Leveraging the non-perturbative nature of these advanced microscopy techniques, we captured detailed morpho-molecular data from living, label-free cells in their native physiological environment. Human bias-free data processing pipelines were developed to analyze hyperspectral Raman images (spanning Raman modes from 600 cm to 1800 cm, which uniquely characterize a wide range of molecular bonds and subcellular structures), as well as morphological data from three-dimensional refractive index tomograms (providing measurements of cell volume, surface area, footprint, and sphericity at nanometer resolution, alongside dry mass and density).

View Article and Find Full Text PDF

Objectives: To analyze the differences in the prognosis of gastric signet ring cell carcinoma (SRCC) among different races using the US Surveillance Epidemiology and End Results (SEER) database and The Cancer Genome Atlas (TCGA) database.

Methods: We analyzed the data of patients with gastric SRCC from the SEER database from 2000 to 2020, and divided the patients into cohorts of whites, blacks, Asians or Pacific Islanders, American Indians/Alaska Natives according to their race. The prognosis and treatment of the cohorts were evaluated using baseline demographic analysis, Kamplan-Meier survival curve, and nomogram analysis.

View Article and Find Full Text PDF