98%
921
2 minutes
20
We present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos. Importantly, we provide detailed information necessary to achieve reliable cell type specific labeling under different experimental contexts. We demonstrate direct pathway circuit-selective optogenetic perturbation of behavior and multiplex labeling of striatal interneuron types for targeted analysis of cellular features. Lastly, we show conserved activity for exemplary MSN enhancers in rat and macaque. This collection of striatal enhancer AAVs offers greater versatility compared to available transgenic lines and can readily be applied for cell type and circuit studies in diverse mammalian species beyond the mouse model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463465 | PMC |
http://dx.doi.org/10.1101/2024.09.27.615553 | DOI Listing |
Invest Ophthalmol Vis Sci
September 2025
Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.
Purpose: Adeno-associated viruses (AAVs) have become the preferred vector for gene therapy in ophthalmology. However, requirements for specific cell surface receptors limit AAV-mediated retinal cell transduction efficiency. This led to the need to engineer novel AAV vectors for widespread retinal transduction and transgene expression.
View Article and Find Full Text PDFBiosaf Health
August 2025
Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno 89557 Nevada, United States of America.
The role of personal protective equipment (PPE) in protecting against exposure to infectious agents and toxic chemicals is well-established. However, the global surge in PPE demand during the pandemic exposed challenges, including shortages and environmental impacts from disposable waste. Developing effective, scalable, and sustainable decontamination methods for the reuse of PPE is essential.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
Recombinant adeno-associated viruses (rAAV) have emerged as a preferred strategy for gene delivery. However, the immune response to rAAV presents a major limitation, leading to serious adverse events in clinical trials. This study investigates the interaction between rAAV and the innate immune system.
View Article and Find Full Text PDFCurr Gene Ther
September 2025
Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
Gene therapy has revolutionized the therapeutic landscape for hemophilia A and B, offering the prospect for persistent endogenous production of coagulation factors VIII and IX. Recent advances in adeno-associated virus (AAV)-mediated gene transfer, particularly the approvals of valoctocogene roxaparvovec (Roctavian) and etranacogene dezaparvovec (Hemgenix), mark significant milestones in hemophilia care. This mini-review synthesizes emerging clinical data from phase I-III trials published between 2022 and 2025, emphasizing efficacy, durability, and immunogenicity profiles of leading AAV-based therapies.
View Article and Find Full Text PDFRedox Biol
September 2025
Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, Jiangsu, 226000, China; Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu, 226000, China. Elec
Spinal cord injury (SCI) is a devastating condition characterized by the accumulation of myelin debris (MD), persistent neuroinflammation, and impaired neural regeneration. Although macrophages are pivotal for MD clearance, the impact of excessive MD phagocytosis on macrophage phenotype and function remains poorly understood. Building upon our prior evidence that exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, mitigates microglia-driven neuroinflammation post-SCI, this study elucidates the therapeutic efficacy and underlying mechanisms of Ex-4 in alleviating macrophage senescence, restoring efferocytotic capacity, and facilitating neural repair.
View Article and Find Full Text PDF